
出力端子の種類
TTLゲートＩＣの出力端子の種類：

①　出力段が プッシュプル動作で

　　Hiにも、Lowにも

 引っ張るタイプ。

②　オープンコレクタタイプ、通常

　　外部抵抗で、PullUpするタイプ。

　　ワイヤードOR接続が可能。

③　３ステート出力、Hi出力、

　　Low出力、Open状態の

　　３つの状態を持ちます。

Ｌｏｗ出力 Ｈｉ出力オープン

プ
ッ
シ
ュ
プ
ル

オ
ー

プ
ン
コ
レ
ク
タ

３
ス
テ
ー
ト

Vcc

Out

Gnd

Vcc

Out

Gnd

Out

ON

OFF
P

N

ON

OFF

P

N

Gnd

Vcc

N
ON

Out

Gnd

Vcc

N
OFF

Vcc

Out

Gnd

Vcc

Out

GndON

OFF
P

N

ON

OFF

P

N

Vcc

Out

GndOFF

OFF
P

N

入力端子の種類
　TTLゲートICの入力端子は、スレシホー

ルドレベルが、1.4Vぐらいです。入力端子

をオープンにすると、Hi入力状態になりま

す。　これに対し、マイコンも含めたC-

MOS素子の入力端子は、電源電圧の半分の

電圧が、スレシホールドレベルになりま

す。

　C-MOS素子は、入力インピーダンスが非

常に高く、オープンにすると ノイズを拾

い好ましくありません。　よって、未使用

端子は、抵抗で PullUpするか、GNDに落と

す事が望ましいです。　マイコンの場合

未使用端子は、出力端子に設定しておく方

法も 考えられます。

　マイコンも含めた C-MOS系の素子は、昔から静

電気に弱いと言われてます。　遥か昔の C-MOS

ゲートよりは、耐性を改善してある様ですが

特に冬場、扱いには気を付けて下さい。

　腕にリストバンドを付けてアースに接続してお

くのが効果的です。　あと マイコンには、一部

の端子を アナログ入力端子として設定し、A/D変

換、または、アナログコンパレータとして使える

ものもあります。 A/D変換器は、通常 10bitか

12bitぐらいが 多いです。A/D変換器そのものは

１個で、その前段にサンプルホルダーがあり、さ

らにその前に アナログマルチプレクサ（切替え

器）が付いており 入力端子を切り替えながらA/

D変換します。 精度を要求する場合、アナログの

基準電圧を用意する必要もあります。　A/D変換

に関しては、また別の機会に詳しく説明します。

マイコンの入出力端子は、３ステートの機能を持ちま

す。 そして この出力回路と入力回路は、入出力端子

のところで接続されています。　出力端子として設定

すると、Hiか Lowを出力します。　入力端子として設

定すると出力端子は、オープン状態となります。

　よって、外からの信号を取り込めます。

Pinのところで、出力と入力が接続されているので、

出力端子として設定している端子を、読み込むと

出力端子が出している信号を取り込む事になります。

　マイコンの端子は 入出力の設定は当然ありますが

マイコンの種類により端子を PullUpする機能や

駆動力の強弱設定、用途によりオープンドレイン駆動

に切り替える設定が、マイコンの種類により ありま

す。

マイコンの入出力端子

端子３ステート出力回路

入力回路

今回の基礎プログラミング

　R8C/M120Aマイコンを使って、今回

行うプログラミングですが、割込み処

理やアセンブラは 使わず Ｃプログラ

ムだけで、シンプルに行います。

そして実験回路で動作を確認します。

　最初、右の ①～⑤ まで一気に

やってしまうつもりでしたが、

制作時間が、ややかかり過ぎるのと

見る人も疲れるので小分けにする事に

しました。　 実験基板は、②～⑤の

実験 も 見据えて作りました。

＊＊＊　今回、実装する機能　＊＊＊

①　クロックを 高速オンチップ

　　オシレーター（20MHz）に変更する。

★　次回、行う予定　★

②　キー入力のチャタリングキャンセル

　　

③　キーが押された瞬間のエッジ検出

④　一定のパルス幅を出すワンショット

　　パルスの機能を実現する。

⑤　複数のキーの多重押しの際に、

　　先着優先機能を付ける。

今回の実験回路

 R8C/
 M120A

①　マイコンには、R8C/M120Aを使用

　　します。最低限必要な配線は、

　 3 Pinが 4.7K～10Kの抵抗を入れて

　　　　電源に接続します。

　　5 Pinが GND

　　7 Pinが 電源(5V または 3.3V)

　　　　5Pin と 7Pin の近くに跨ぐ形で

　　　　0.1uFの積セラを入れる。

　 8 Pinが 4.7K～10Kの抵抗を入れて

　　　　電源に接続します。

②　入力には、３つの PullUpされた

　　押しボタンスイッチを接続します。

③　出力には、３つの LED＋電流制限

　　抵抗を接続します。

Vcc

20

19

18

Vcc

5

7
8

Vss

P1_0

P1_1

P1_2

Vcc

Mode

P1_5

P1_7

P1_6

15
14
13

4
.
7
K

*
3

1K

1K

1K

4.7K

0
.
1
u

3
Vcc Reset

④　電源と GND間に 10～33uFの
　　　　　電解コンを入れる。

今回の実験回路

R8C・M120A

20P4_2/TRBO/TXD0/／K13

19

18

17

16

15

14

13

12

11

1

2

3

4

5

6

7

8

9

10

P3_7/／ADTRG/TRJO/TRCIOD

／RESET/PA_0　

P4_7/XOUT/／INT2

VSS/AVSS

P4_6/XIN/RxD0/TxD0/／INT1/

VCC/AVCC

MODE

P3_5/TRCIOD/／K12/VCOUT3

P3_4/VREF3/TRCIOC/／INT2

P1_0/AN0/TRCIOD/／K10

P1_1/AN1/TRCIOA/TRCTRG/

P1_2/AN2/TRCIOB/／K12

P1_3/AN3/TRCIOC/／K13/TRBO

PI_4/AN4/TXD0/RXD0/／INT0/

P1_5/RXD0/TRJIO/／INT1/

P1_6/VREF1/CLK0/TRJO/

P1_7/AN7/CMP1/IVCMP1/／INT1/

P4_5/／INT0/ADTRG

P3_3/VCMP3/TRCCLK/／INT3

R8C/M120A CPUの Pinアサイン

赤のPin（ 5, 7, 8 ）は、他の用途では使えない。

柿色のPin（ 3, 4, 6 ）は、通常は、RESET、XOUT、XIN に使用するが、

　　　　Pinが 足りない時は、条件付きで 別の用途にも使える。

R8C/M120Aのポートレジスタ Port.1

b0

P1_0

b1

P1_1

b2

P1_2

b3

P1_3

b4

P1_4

b5

P1_5

b6

P1_6

b7

P1_7

Port.3

b0b1b2b3

P3_3

b4

P3_4

b5

P3_5

b6b7

P3_7

Port.4

b0b1b2

P4_2

b3b4b5

P4_5

b6

P4_6

b7

P4_7

Port.A

b0

PA_0

b1b2b3b4b5b6b7

Port.1のレジスタは、b7～b0まで全て、P1_7～

P1_0にアサインされる。 水色は、A/D入力と重

なる Pin。 当然、A/D入力として使用するPinは

I/O Pinとしては 使えない。

Port.3のレジスタは、b7, b5, b4, b3 の 4bit

が、P3_7, P3_5, P3_4, P3_3 に アサインされ

る。

Port.4のレジスタは、通常 b5, b2 の 2bitが、

P4_5, P4_2 にアサインされる。

水晶発振子を使用しないのであれば、

b7(P4_7)、B6(P4_6)も、使える。

Port.Aの 3Pin端子を RESET信号入力として使わ

ない場合、B0(PA_0)として 使える。

13 14 15 16 17 18 19 20

2 11109

1264 1

3

クロックを 高速オンチップオシレーター
（20MHz）に変更するプログラム

//**
//** 高速内部オシレータ 20MHzに切り替え **
//**
void sel_int_osc_20m(void)
{

asm("fclr I"); // 割り込み処理 禁止
min_wait(1000); // ★ 若干の時間待ち

prc0 = 1; // Protect bit 0を 解除する
ococr = 0x01; // 高速オシレータ発振開始
min_wait(1000); // ★ 若干の時間待ち

sckcr = 0x40; // 高速オンチップ OSC選択
ckstpr = 0x80; // システムクロック高速選択
prc0 = 0; // プロテクト有効化
min_wait(100); // ★ 若干の時間待ち

}

//********************************
//** 若干の時間待ち **
//** -------------------------- **
//** n : 時間待ちループ回数 **
//********************************
void min_wait(int n)
{

int i;

for(i=0; i<n; i++);
}

プログラムソース名
simple_1.c

初期化処理とメイン関数
プログラム

void main(void)
{
 int i;

 initproc(); // 初期化処理
 while(1)
 {
 LED_G = 1; // 緑LED 消灯
 LED_R = 0; // 赤LED 点灯
 for(i=0; i<5000; i++); // Wait
 LED_R = 1; // 赤LED 消灯
 LED_Y = 0; // 黄LED 点灯
 for(i=0; i<5000; i++); // Wait
 LED_Y = 1; // 黄LED 消灯
 LED_G = 0; // 緑LED 点灯
 for(i=0; i<5000; i++); // Wait

}
}

#include "sfr_r8m12a.h"

#define LED_G p1_2 // 緑 LEDポート
#define LED_Y p1_1 // 黄 LEDポート
#define LED_R p1_0 // 赤 LEDポート

void initproc(void)
{

sel_int_osc_20m(); // 内部OSC 20MHz
LED_G = 1; // 緑LED 消灯
LED_Y = 1; // 黄LED 消灯
LED_R = 1; // 赤LED 消灯

pd1 = 0x1f; // Port1入出力設定

pd3 = 0xb8; // Port3入出力設定

pd4 = 0x64; // Port4入出力設定

}

CPUクロックを高速に変更する
実験の確認方法

　最初、初期化の sel_int_osc_20m()を、コメ

ント化して、プログラムを作っておきます。

　

電源オン直後の低速クロックで、LEDを

赤、黄、緑と順次点灯させます。

（ ゆっくり点灯が、切り替わります。）

　各LEDの点灯が切り替わる間に、for文による

空ループが、5000回まわります。

１個のLEDが点灯している時間をオシロの

リードアウト機能で計ります。

　次に、初期化の sel_int_osc_20m()を、生か

して高速クロックで動作させます。

　当然、コンパイルして、MOTファイルをマイコ

ンに書き込みます。

（ 今度は、早すぎて赤、黄、緑が 全て点灯し

ているように見えます。）　

先ほどと同じく１個のLEDが、点灯している時間

をオシロの リードアウト機能で計ります。

　これで、何倍 早くなったか分かります。

