
パソコンと
リアルタイム処理の相性

　パソコンは、超高速なＣＰＵと、ふんだん

にあるメモリ資源、大容量HDD等の補助

記憶を使う事が出来、高解像度のグラ

フィック、LAN接続も出来ます。

　何でも出来そうな感じですが、パソコン

の苦手な事もあります。　パソコンというよ

りも、Windows等の OSでハードウェア資

源を管理されているので、直接IO命令等

の特権命令は使えません。　それと、リア

ルタイム性（特に早い応答）を、保証出来

ません。　Windows等の OSは、多数の

プロセスをマルチで起動しています。

そしてタイムスライス的に管理してます。　

よって自分のプロセスに ＣＰＵ資源を

渡されるまで、そのプロセスは待ち状態に

なります。　特に起動直後は、いろんな事

をやってるようで、一次的に画面描画が止

まる、音が途切れる、キーボードの文字が

すぐに入らない。　という経験をした方も多

いと思います。　

　よって、ＯＳで管理されるコンピュータは

特殊なリアルタイムOSを除き、リアルタイ

ム処理を要求する組込み処理や、計測制

御の用途では、使えない と 考えた方が

いいと、私は考えます。　

　　逆に、組込み用ワンチップマイコンは、

パソコンに比べ、ＣＰＵの処理能力が低い。

メモリが少ない。　特に RAMが少ない。

　等の、制限がありますが、低価格ゆえ、

１つの仕事に専念させる事が出来ます。

　マイコンには、タイマー割込みの機能も

あるのでやや時間のかかる演算処理を

しながら、IOのスキャニングを タイマー

割込みで、定周期で行う事が出来ます。

リアルタイム処理の救世主
組み込み用ワンチップマイコン

　今回使う、百円マイコン R8C/M120Aでも

以前作成したSTEPモーターの加速、減速

制御に、10KHz（ １秒間に10,000回 ）の

タイマー割込み処理を 使用しました。

そういう意味では。組込み用マイコンは

リアルタイム処理の救世主といえます。

　ただ、パソコンに比べ、メモリ資源が

少ないので効率のいいプログラムを

工夫して作る必要が あります。

　また、用途によっては、USB-シリアル

インターフェースを用いてパソコンと、マイコ

ン間で データの やり取りも出来ます。

マイコンのプログラム実行フローマイコンのプログラムは
終わる事のないループ処理

　非常に基本的な話ですが

OSで管理されるプログラムは、用が済んだ

ら終わるのが 当たり前です。

　しかし、ワンチップマイコンは、書き込んだ

プログラムが、全てですので、終わるという

概念がありません。　　延々メインループを

定周期で回り続けます。　

　しいていえば、電源を切った時が、終わる

時です。　よってマイコンのプログラムは

右のフローチャートのようになります。

電源ON

初期化処理

入力処理

演算判断処理

出力処理

時間待ち処理

マイコンのプログラム実行フロー

　　まず電源ON直後に、各周辺回路、変数の

初期化を行います。　１回のループ処理は、

（１） その瞬間のデータを取込み、そのデータを

元に、(２) 演算判断処理を行い、(3) 出力を行

います。　 よって、１回まわる周期内で出来る

事を、極力 短時間で処理します。

時間のかかる処理を、入れてはいけません。

本格的にやる場合、ループの頭にある、

(0) 時間待ち処理は、入れずに

タイマー割込み処理で行います。

　今回は、入門者向けという事で、メインループ

に時間待ち処理を入れて、大雑把に一定時間

のタイムインターバルを作り、実験を行います。

　

マイコンのプログラム実行フロー

電源ON

初期化処理

　(1) 入力処理

　(2) 演算判断処理

　(3) 出力処理

　（0) 時間待ち処理

②キー入力の　
チャタリングキャンセル

　キーの接点が、ONしたり、OFFする瞬間

は細かいON、OFFが繰り返される場合があ

ります。 これをチャタリングといいます。

　これがあると、キー入力の誤動作になる

ので、除去する必要があります。

　今回は、デジタルフィルタという方法で

チャタリングを取り除きます。　0～11までの

破線は、接点の状態をサンプリングするタイ

ミングです。 サンプリングした結果は、H と

L で 表示しています。 キーを押したタイミン

グでは、チャタリングは、サンプル 1 と ２の

間に　納まっています。

OFF

ON

チャタリング

0 1 2 3 4 5 6 7 8 9

Time

10 11

H H L L L L L H L H H H

　キーを離したタイミングでは、サンプル 7

と 8 の間でチャタリングが発生して、H、Lの

判定もバタついています。　これを除去する

ために、仮に L が ３回続けば キーが押さ

れている(論理1)、H が ３回続けば キーが

離された(論理0) と 判断する事にします。

0 0 0 0 1 1 1 1 1 1 1 0

キーを押した キーを離した

論理値の表現

　　今回、キー入力等の外から取り込む信号

、LEDなどの外へ出す信号が、負論理になっ

ております。、前ページでは、H と L で、表

現しましたが、ここでは 負論理の 1 、 0　で

表現してます。

OFF

ON

チャタリング

0 1 2 3 4 5 6 7 8 9

Time

10 11

0 0 1 1 1 1 1 0 1 0 0 0

0 0 0 0 1 1 1 1 1 1 1 0

キーを押した キーを離した

　しかしマイコンの中では、正論理で、0 と

1 で表現されます。 通常 １ が アクティブ

です。 処理前のレジスタで、1が ３回続け

ば、処理後のレジスタが、１になります。

但しこの場合、一つ条件があり、処理後レ

ジスタのそれまでの状態が、0である事が

前提です。　処理後レジスタの最新値が

１になったら、今度は、0が ３回続く事を監

視します。 　つまり処理後レジスタの最新値

が、0であるか、1であるかで 状態変移の監

視する 論理レベルが 変わるのです。

　ある意味ヒステリシスを持たせたような状

態で、処理後レジスタは、チャタリングも含

め ノイズ等で、簡単に変わらないようにして

いるという事です。

処理前

処理後

プログラムの説明前に
マクロ宣言の説明

　私は、符号なし変数宣言時、

 unsigned char a;

 unsigned int b;

と宣言する代わりに、

 BYTE a;

 WORD b;

と宣言してます。これを実現するには

ソース先頭、またはヘッダファイル内

で、マクロ宣言

#define BYTE unsigned char

#define WORD unsigned int

を、宣言すれば可能です。

　今回の用途で、いくつかマクロを用意

　してます。

#define LED_G p1_2 // 緑LEDポート

#define LED_Y p1_1 // 黄LEDポート

#define LED_R p1_0 // 赤LEDポート

#define ON_LED 0 // LED点灯

#define OFF_LED 1 // LED消灯

#define PSW_1 p1_5 // SW_1ポート

#define PSW_2 p1_6 // SW_2ポート

#define PSW_3 p1_7 // SW_3ポート

#define PSW_ON 0 // スイッチON

#define PSW_OFF 1 // スイッチOFF

#define SHOT_COUNT 160 // ショット出力の

 // 時間 0.8秒

チャタリングキャンセルを
C言語でどのように実現するか

　　意外と簡単に実現出来ます。

前回は、状態の移り変わりを見せるため、

処理前レジスタと、処理後レジスタを用意

しましたが処理前のレジスタは、最新の

3bitあればOKです。 処理後のレジスタ

は、1bit フラグがあれば OKです。　

BYTE変数が２個あれば出来ます。

私は構造体で宣言してます。

typedef struct {

 BYTE sw_sh; // スイッチ変移状態

 BYTE sts; // ON,OFF 判定値

} sw_param; // １個のSW関連パラメータ

　　ソースの一部分を、表示します。

内容を分かりやすくするため少し変えています。
 sw.sw_sh = sw.sw_sh << 1;
 // スイッチ変移状態 更新
 sw.sw_sh &= 0x07;
 // 下位 3bitのみ残す
 if(PSW_1==PSW_ON) sw.sw_sh |= 1;
 // SW=ONの時 最下位bitを 1にする

 if(sw.sts == 0)
 { // 連続３回 SW=ON が 成立か ？
 if(sw.sw_sh == 7)
 sw.sts = 1; // SW=ON 確定
 }
 else
 { // 連続３回 SW=OFF が 成立か ？

 if(sw.sw_sh == 0)
 sw.sts = 0; // SW=OFF 確定

}

エッジ検出と、先着優先機能

　今回は、缶コーヒー販売機のイメージで

作ったので、各押しボタンのチャタリング

キャンセル処理は、３つ独立して処理してま

すが、エッジ検出と、先着優先機能は、２つ

が、結合した形になり、ちょっと ややこしくな

りました。

// 制御管理用の構造体データ

typedef struce {

 BYTE rdy_bsy; // 待機中 処理中 Flag

 BYTE sel_sw; // 先着 SW番号

 BYTE sel_sw_e; // 先着 SW番号 一つ前

 BYTE shot_cnt; // Shot出力時間ｶｳﾝﾀ

} ctrl_param; // 制御パラメータ

SW
1

SW
2

SW
300000rdy_bsy

b0b1b2b3b4b5b6b7

124bit位置の10進表示 -->

bit番号

 rdy_bsy変数は、b0～b2が 各 SW1 ～SW3の

スイッチONの 時 1 になるフラグです。

各スイッチの押下状態を一度に確認できます。

 0であれば、SW１～SW3は、どれも OFF状態

です。　SW3だけ ONであれば、10進数で 4

SW1～SW3 全てが、ONであれば、 7 になりま

す。　rdy_bsy変数は、各スイッチの チャタリン

グキャンセル処理にて、ONが確定した時、該

当する bit に、１が記録されます。

OFFが、確定した時は、該当する bit に 0が

記録されます。

 rdy_bsy変数が、設定された後に、sel_sw変数

（先着 SW番号）が、設定されます。

　よって、 rdy_bsy != 0　&&　sel_sw == 0

のタイミングが、スイッチが押されたエッジを

検出した事になります。　エッジ検出のタイミン

グで、shot_cnt変数に、ワンショットパルス出力

の時間長さのカウント数を設定します。

　そして、rdy_bsy変数の、b0、b1、b2 を順に

調べて、最初に　bit ==１ が、見つかった

bitに対応する SW番号を sel_sw に設定し、後

の bit は無視します。　この、sel_sw に設定さ

れた番号が、先着優先番号となります。

　残りの、sel_sw_e変数は、１サンプル前の

sel_swの値を保持します。

sel_sw変数が、0 で　sel_sw_e変数が、 0 でな

いタイミングが、 Busy状態から、Ready状態に

戻ったタイミングで、点灯したLEDを消すタイミ

ングとなります。　

Ready状態は、SWを、どれも押して無い待機状

態です。

Busy状態は、SWのどれか１つ以上押された状

態です。　

あるいは、全てのボタンを離しても　LED点灯

のワンショットパルスの点灯時間が、終わって

ない場合は、点灯時間が 終わるまで　Ready

状態に戻るのは待たされます。

 if(cpm.shot_cnt > 0) cpm.shot_cnt--;
 if(cpm.rdy_bsy != 0)
 {
 if(cpm.sel_sw == 0)
 {
 cpm.shot_cnt = SHOT_COUNT;
 if((cpm.rdy_bsy & 1) != 0)
 cpm.sel_sw = 1;
 else
 {
 if((cpm.rdy_bsy & 2) != 0)
 cpm.sel_sw = 2;
 else
 cpm.sel_sw = 3;
 }
 cpm.sel_sw_e = cpm.sel_sw;
 }
 }
 else
 {
 if(cpm.shot_cnt == 0) cpm.sel_sw = 0;
 }

　一番上の行の説明が抜けてました。

メンバー変数 shot_cnt は、LED点灯出

力の残り時間となります。0 以上であ

れば、毎回ループ処理で回ってくる毎

に、デクリメントされます。

0 になれば、LEDは 消灯します。

　ここでの説明だけでは、分かりにくいと

思いますので、今回も、HEWプロジェクト

ファイルを、ダウンロード出来るように

しておきます。

　興味のある方は、ダウンロードして

ソースファイル simple_2.c を見て下さい。

ワンショットパルス出力処理
　void one_shot_out(void)
　{
 BYTE led;

 if(cpm.shot_cnt > 0) led = ON_LED;
 else led = OFF_LED;

 switch(cpm.sel_sw) // 出力LEDの選択
 {
 case 0: if(cpm.sel_sw_e != 0)
 {
 LED_R = OFF_LED; // 全消去
 LED_Y = OFF_LED;
 LED_G = OFF_LED;
 cpm.sel_sw_e = 0;
 }
 break;
 case 1: LED_R = led; // 赤LEDの 点灯
 break;
 case 2: LED_Y = led; // 黄LEDの 点灯
 break;
 case 3: LED_G = led; // 緑LEDの 点灯
 break;
　　}
　}

先頭で、BYTE変数 led を宣言してます。

shot_cnt が 0 でなければ、led に ON_LEDを

代入します。0 であればled に OFF_LED

を、代入します。

case 0　は、sel_sw が 0 という事は、どれ

も選択されて無いので、３つの LEDを、全て

消灯して、 sel_sw_e 変数を 0 に　します。

case 1 は、SW_1 が、選択された状態なので

LED_R　(赤LED)　に led の値を入れる。

case 2 は、SW_２ が、選択された状態なので

LED_Y　(黄LED)　　に led の値を入れる。

case 3 は、SW_３ が、選択された状態なので

LED_G　(緑LED)　に、led の値を入れる。

構造体を一本化 // 構造体変数 宣言
// --
typedef struct {
 BYTE sw_sh; // スイッチ変移状態変数
 BYTE sts; // フィルタ処理後の ON,OFF 判定値
} sw_param; // １個のスイッチ関連パラメータ

typedef struct {
 sw_param sw1; // スイッチ１のパラメータ
 sw_param sw2; // スイッチ２のパラメータ
 sw_param sw3; // スイッチ３のパラメータ
 BYTE rdy_bsy; // 待機中 処理中 判定フラグ
 BYTE sel_sw; // 先着スイッチ番号（ 1, 2, 3 ）
 BYTE sel_sw_e; // 先着スイッチ番号 消去用
 BYTE shot_cnt; // ワンショット出力カウンタ
} ctrl_param; // 制御パラメータ

// 静的変数宣言
// --
static ctrl_param cpm; // 制御パラメータ実態宣言

　最後に、main 関数の説明をする

前に、説明が、前後して申し訳あり

ませんが、構造体宣言の、変更を

しました。

　最終的に　ctrl_param 構造体の

中に、sw_param 構造体変数を、

3個　sw1、sw2、sw3 の名前で　組

込みました。

　構造体変数 cpm 内に 制御に

必要な全ての 静的変数が、組み込

こまれています。

void main(void)
{
 initproc(); // 初期化処理

 while(1)
 {
 ms_wait(5); // 約 5ms 待つ

 sw_filter(&cpm.sw1, 1); // SW１のフィルタ処理
 sw_filter(&cpm.sw2, 2); // SW２のフィルタ処理
 sw_filter(&cpm.sw3, 3); // SW３のフィルタ処理

 first_sw_sel(); // 先着スイッチ番号判定
 one_shot_out(); // ワンショット LED点灯

}
}

メイン関数

initproc 関数（初期化処理）を、最初に

行います。　その後、無限 while ループ内

にて、ms_wait(5); で、5msのタイムイン

ターバルを作ります。

　次に、3つのスイッチのフィルタ処理を

１本の sw_filter 関数で、変数を独立さ

せて処理を行います。　その関係で、

1回目引数が (&cpm.sw1、1);

2回目引数が (&cpm.sw2、2);

3回目引数が (&cpm.sw3、3);

第１引数が、sw構造体変数のアドレス渡し

第２引数が、IO Port識別用スイッチ番号

と、なります。

おまけ、アドレス渡し
ポインター、参照渡し

　前ページの説明で、

sw_filter(&cpm.sw1, 1); が、ありました。　

第一引数の &cpm.sw1 が、構造体変数 cpm 内

のメンバー変数 sw1 の値ではなく、 変数がメモ

リ上に 格納されているアドレス値 を、渡すという

事で & で 指定しています。

呼び出される関数のプロトタイプは、

void sw_filter(sw_param *sw, int sel);

で、それを、ポインター変数として受け取ります。

構造体変数ポインターの場合、ちょっと厄介なの

は、 sw 構造体の メンバー変数 sw_sh をアクセ

スする場合は、sw->sw_sh と記述します。

（ -> は、アロー演算子と呼ぶようです ）

　ポインターではなくて 構造体変数の実態を

アクセスする場合は、 sw.sw_sh になりま

す。 　いつも、構造体のポインターを使うとき

-> は、面倒だなと思います。

　その後、開発された Object志向言語には、

参照渡しという 引数の渡し方があります。

　一般的に、ポインター渡しより、参照渡しの

方が、null を アクセスする心配がないので

安全と言われてます。 残念ながら、C言語では

このタイプの 参照渡しは、使えません。

実験による動作確認、その１

①　まずは、スイッチの抵抗でPullUp

　　されている箇所にオシロのプローブ

　　（ch.1）を当てチャタリングの

　　状態を観測します。

　　それと接点の状態を読み込んだ直

　　後の sw_sh変数の最下位 bitの

　　状態を オシロ（ch.2）で観測

　　します。

②　サンプルレートを遅くして

　　sw_sh の 変位状態（ 右の図参照 ）

　　を ３個のLEDで 可視化します。

0 0 0n

0 0 1n+1 (1)　SWが押された瞬間

(0)　SWを押してない。

0 １ 1n+2 (3)　SWが押されたまま

1 １ 1n+3 (7)　SWが押されたまま

SW_SH

1 １ 1m (7)　SWが押されたまま

1 １ 0m+1 (6)　SWを離した瞬間

1 0 0m+2 (4)　SWを離したまま

0 0 0m+3 (0)　SWを離したまま

b2 b1 b0
状態の変移

実験による動作確認、その２

①　エッジ検出と、LEDの ワンショット

　　点灯（ 0.8秒 ）を確認する。

②　瞬間押しでも、長押ししても、0.8秒

　　しか点灯しない事を確認する。

③　スイッチを複数同時押し、しても

　　どれか一つしか点灯しない事を

　　確認する。

④　全てのスイッチを、一旦離さないと

　　次の 点灯が出来ない事を確認する。

