
SCL、SDAの信号測定を行います。
ソフトが完成しないと信号が出ないので

ソフト完成後の測定になります。

I2C信号引き出し用の 40cmのケーブル末端の
コネクタ部分の信号を測定します。

 SCLの周期から転送速度を求めると 約 370Kbpsです。

左が40cmのケーブルを
通して測定した波形。
右がアダプタ基板から

信号を取り出して
測定した波形。

（ シングルマスタの場合 ）

I2Cインタフェースについて

I2Cバスの接続

SCL SDA
I2Cマスタ

SCL SDA
I2Cスレーブ

１

SCL SDA
I2Cスレーブ

２

プルアップ
抵抗

SCL
SDA

 I2Cバスは、SCL（シリアルクロック信号）と
SDA（シリアルデータ信号）の、２本の信号線
で構成されています。
　SCL信号は、マスタから出力されるクロック
信号で、スレーブは、この信号に合わせたタ
イミングで、データの送受信を行います。
　SDA信号は、双方向の信号線で、その時の

　状況に応じて SDAの信号の方向が変わり
ます。 マスタが 特定のスレーブにデータ
を、書き込む時は、Write信号として マス
タからスレーブに、データが送られます。
　マスタが 特定のスレーブからデータを
読み出す時は、Read信号として スレーブ
からマスタへ、データが送られます。

　今回は、USB-I2C変換アダプタ（ R8C/
M110Aマイコン ）が I2Cの マスタに
なります。 今回、プログラムで I2Cの
通信機能を作成するので、I2Cのプロトコル
を しっかり理解する必要があります。

　今回は、I2Cのサブセットとして、
I2Cアドレスは 7bit固定、通信速度は
400[Kbps]以下の シングルマスタという
基本的な構成を 実現します。

I2C通信シーケンス (1)

　I2C通信は、SCLと SDAの２本の信号線
を用います。待機中 SCLと SDAは、両方
とも Hiレベルです。

[1] スタートコンディション：
 今から通信シーケンスを開始する事を
マスタが、スレーブに通知するための信
号です。　SCLが、Hiの期間中に SDAを
Hiから Lowに変化させます。
[2] ストップコンディション：
　マスタが、スレーブに対し通信を終了
させる時に出します。　SCLが、Hiの
期間中に SDAを Lowから Hiに変化させ
ます。

SCL

SDA

スタート
コンディション

SCL

SDA

ストップ
コンディション

Time Time

通常のデータビットでは、SCLが Lowの
期間中に、SDAを変化させるので、デー
タビットと、スタート／ストップ コン
ディションは、区別出来ます。

SCL

SDA

通常のデータビット

Time

1 0 0

1,0,0 の 3bit出力例

I2C通信シーケンス (2)

[3] リピートスタートコンディション：
　8ピンの EEPROMをアクセスする際に
リピートスタートコンディションを発行
する場合があります。
①　SCLが、Lowの期間に一旦、SDAをHi
　　にします。
②　SCLを Hiにします。
③　SDAを Lowにします。　

最近は、殆どのマイコンに、データ用フ
ラッシュROMが入っている事もあり
外付けで 8pinのシリアルEEPROMを使う
事が、少なくなってきました。
　これにより、リピートスタートコン
ディションを使う機会も減ったように思
います。

SCL

SDA

リピートスタートコンディション

Time

① ② ③

I2C通信シーケンス (3)

[4] I2Cコントロールバイト：
スタートコンディション直後、最初に
出力するバイトデータが、コントロール
バイトです。今回は、7bitアドレスで
説明します。 10bitアドレスも規格上は
ありますが、私は使った事が無いです。
①　一旦 SCLをLowに降ろします。
②　スレーブのI2Cアドレスの A6 ～ A0
　　の 7bitを 順次 bit単位でスレーブ
　　に書き込みます。
③　次にデータを書込む際は、Write
　　(SDA=Low)、読出す際は、Read
 (SDA=Hi)を、1bit 出力します。
　　スレーブからの ACK/NAK(1bit)を
　　受け取ります。

SCL

SDA

I2C コントロールバイトの出力
Time

A6 A5 A4 A3 A2 A1 A0 R/W ACK

マスタ出力
スレー
ブ出力

[5] データバイト出力（Write）：
　　内容(データ)が異なるだけで、コン
　　トロールバイト出力と同じです。

SCL

SDA

I2C データバイトの出力
Time

D7 D6 D5 D4 D3 D2 D1 D0 ACK

マスタ出力
スレー
ブ出力

I2C通信シーケンス (4)

[6] データバイト入力（Read）：
　　SDAの出力元が、入れ替わるだけで
　　シーケンスは、同じです。

SCL

SDA

I2C データバイトの入力
Time

D7 D6 D5 D4 D3 D2 D1 D0 ACK

スレーブ出力
マスタ
出力

[7] 一連の電文シーケンス例：
I2Cスレーブアドレス 3Ch に、

　　40h、41hのデータ2byteを 書き込む
　　例です。
①　スタートコンディションを実行。
②　7bitAddress = 3CHでコントロール
　　バイト(Write)を、出力します。
③　データ40hを データバイトとして
　　出力します。
④　データ41hを データバイトとして
　　出力します。
⑤　ストップコンディションを実行。

　ACK／NAKに関して：
　通常、通信制御コードの ACK、NAKは、肯定応答、否定応答の意味で、送り元が、受信
　側からNAKを受け取った場合は、再送信等のエラーリカバリ処理を行います。が、I2Cは
　どちらかというと、転送する最終バイト識別の意味合いで用います。

I2C通信のソフト開発

[8] I2C通信の基本的なシーケンスの
　　説明を行いましたので、今回のUSB-
　　I2Cアダプタのソフト開発に関して
　　概略を説明します。

　　　最初は マイコン側だけのソフト
　　を作成してパソコン側は フリーの
　　ターミナルソフトを 使えないかと
　　考えてました。　
　　マイコン側で I2Cルーチンのデバッ
　　グを行って行くうちにI2Cデバイス
　　の初期化に 手間がかかる事が
　　見えてきました。　これらを
　　都度ターミナルソフトで打ち込む
　　のは大変だ。と、思いました。

　という事で方針転換をして、今回の
USB-I2Cアダプタ用の PC側ユーティリ
ティソフトを作る事にしました。
パソコン側の開発環境を使うのは、久々
であった事もありソフト開発に 時間が
かかってしまいました。 最初のパソコ
ンとマイコン間の伝送手順の取り決め、
転送するコマンド群のスクリプトファイ
ルの仕様等を決めます。 終わり方PC側
シリアル受信処理で バグ取りで手間取
りました。

開発環境は、マイコンが ルネサスの
HEWで、パソコンが 旧バージョンの
Delphiです。 Ｃ+Asm と ObjectPascal
の 混在環境で プログラム作成を
しました。

[9] パソコン側と、マイコン側の役割分担:
　　今回マイコン側では

①　USBシリアルで送られてきた 先頭 `W'の Writeコマンドを
 I2Cデバイスに書き込む。 その後、PCに ACKを 返送する。

②　USBシリアルで送られてきた 先頭 'R'の Readコマンドは
　　I2Cデバイスから 指定されたByte数、データを読み込み USBシリアルで
　　ＰＣに送る。

③　USBシリアルで送られてきた 先頭 'D'の Delayコマンドは、マイコン側で
　　指定されたミリ秒単位の時間が 経過したら PCに ACKを 返送する。

基本この ３つの機能を受け持ちます。

[10] Wコマンドの例：

 Wx76/2: xF2 x01 ; 初期化

；は、この位置から右は、コメント

２Byte目 データ

１Byte目 データ

：は、コントロールバイトの終わり

2 は、後に 2Byteのデータが続く事を示す

/ は、セパレータ

x76 は、I2Cスレーブアドレス

W は、Writeコマンドの識別子

マイコンに送るバイナリコマンドは

57h 76h 02h F2h 01h 左の５Byteになる。（ 先頭の 57hは 'W'の ASCIIコード ）

PC側ユーティリティ１行のスクリプト

コマンド完了で、ＰＣに ACK を返送する。06h

[11] Rコマンドの例：

 Rx76/4: ; データ読み出し

；は、この位置から右は、コメント

：は、コントロールバイトの終わり

4 は、I2Cスレーブから、データを読出すByte数

/ は、セパレータ

x76 は、I2Cスレーブアドレス

R は、Readコマンドの識別子

マイコンに送るバイナリコマンドは

52h 76h 04h 左の３Byteになる。（ 先頭の 52hは 'R'の ASCIIコード ）

PC側ユーティリティ１行のスクリプト

その後、I2Cスレーブから、4Byteデータを読み出す。

01h 02h 03h 04h 読み出したデータを USBシリアルで、ＰＣに送信する。

（ Readの場合は、ACK は 送りません。）

[12] Dコマンドの例：

 D20 　　　 ; ディレィ20[ms]

；は、この位置から右は、コメント

20 は、ミリ秒単位の待ち時間

D は、Delayコマンドの識別子

マイコンに送るバイナリコマンドは

44h 14h 左の２Byteになる。（ 先頭の 44hは 'D'の ASCIIコード ）

PC側ユーティリティ１行のスクリプト

指定遅延時間 経過後、ＰＣに ACK を返送する。06h

16×2 OLED表示器のコマンド

;[1]:初期化
D100
Wx3C/2: x00 x01 ; コマンド、画面消去
D20 ; 20ms 待ち
Wx3C/2: x00 x02 ; コマンド、HOME位置へ
D2 ; 2ms 待ち
Wx3C/2: x00 x0F ; コマンド、表示開始
D2 ; 2ms 待ち
Wx3C/2: x00 x01 ; コマンド、画面消去
D20 ; 20ms 待ち

;[2]:１行目文字列
Wx3C/2: x00 x02 ; コマンド、HOME位置へ
D10 ; 10ms 待ち
Wx3C/2: x40 'M' ; データ、１文字表示
D1 ; 1ms 待ち
Wx3C/2: x40 'I'
D1
Wx3C/2: x40 'C'
D1
Wx3C/2: x40 'H'
D1
Wx3C/2: x40 'I'
D1
Wx3C/2: x40 'K'
D1
Wx3C/2: x40 'U'
D1
Wx3C/2: x40 'S'
D1
Wx3C/2: x40 'A'
D1

;[3]:２行目先頭ロケート
Wx3C/2: x00 xA0 ; ２行目先頭ロケート

;[4]:２行目日付
Wx3C/2: x40 '2'
D1
Wx3C/2: x40 '0'
D1
Wx3C/2: x40 '2'
D1
Wx3C/2: x40 '1'
D1
Wx3C/2: x40 '-'
D1
Wx3C/2: x40 '0'
D1
Wx3C/2: x40 '6'
D1
Wx3C/2: x40 '-'
D1
Wx3C/2: x40 '1'
D1
Wx3C/2: x40 '3'
D1

;[5]:輝度設定
Wx3C/2: x00 x2A
D10
Wx3C/2: x00 x79
D10
Wx3C/2: x00 x81
D10
Wx3C/2: x00 xFF
D10
Wx3C/2: x00 x78
D10
Wx3C/2: x00 x28
D10

センサBME280のコマンド

;[1]:初期化
Wx76/2: xF2 x01 ; 初期化(1)
D20
Wx76/2: xF4 x27 ; 初期化(2)
D20
Wx76/2: xF5 xA0 ; 初期化(3)
D20

;[2]:トリムデータ読出し
Wx76/1: x88 ; ？トリムデータ先頭
D20
Rx76/24: ; トリムデータ 24byte Read
D20

Wx76/1: xA1 ; ？次の 1byteトリム指定
D20
Rx76/1: ; トリムデータ 1byte Read
D20

Wx76/1: xE1 ; ？最後の 7byteトリム指定
D20
Rx76/7: ; トリムデータ 7byte Read
D20

;[3]:測定データ取出し
Wx76/1: xF7 ; 測定データを送る指定
D20
Rx76/8: 測定データ 8byte Read
D20

BME280(温度、湿度、気圧センサ)の読み出しデータ

　BME280の読み出しデータは、通常の測定データ以外に、トリムデータと呼ばれる物があります。
トリムデータは、計：32byteのデータです。　　測定データは、8byteです。
読み出した、測定データを、トリムデータを 系数にしたキャリブレーション演算をしないと、本来の
温度、湿度、気圧の値にならないようです。　それと電源ONから、最初の数十秒は、測定値が安定
しないとの事です。　　　では、実際のセンサから読み取ったデータのサンプルを示します。
連続して測定データを読み出す時は、１秒以上の間隔を開けて取り出して下さい。

* BME280 TrimData Dump.
A7, 70, 50, 69, 32, 00, 1F, 8D, 4B, D7, D0, 0B, 1A, 1E, BB, FF,
F9, FF, AC, 26, 0A, D8, BD, 10, 4B, 60, 01, 00, 15, 29, 03, 1E,
* BME280 Muaseres Data Dump.
55, E8, 00, 87, 90, 00, 75, 05,
* BME280 Muaseres Data Dump.
55, EC, 00, 87, 93, 00, 75, 0F,
* BME280 Muaseres Data Dump.
55, EB, 00, 87, 91, 00, 75, 3F,

BME280 8byteの測定データの内訳

55

 測定データサンプル／先頭から 3byteが気圧、
次の3byteが温度、最後の2byteが湿度です。
 2byte目と5byte目のデータは、上位4bitを採用。

E8 00 87 90 00 75 05

気圧
20bit

温度
20bit

55 E8 0 87 90 0 75 05

湿度
16bit

0 1 2 3 4 5 6 7

　ちなみに、今回の BME280では、2byte目と5byte目
のデータは 常時 00 です。　将来的に分解能の高い
センサデバイスが出来た時を想定して 20bitにして
いるのかもしれません。

BME280 32byteの
トリムデータに関して

　32Byteのトリムデータですが、
①　先頭の6Byteが、
　　　　2Byte整数 3個の温度係数
②　次の18Byteが、
　　　　2Byte整数 9個の気圧系数
③　次の 8Byteが、
　　　　6個の湿度系数
になっています。 これらの系数を用い
温度、湿度、気圧のキャリブレーション
計算を行う事になってます。 ここでは
演算処理の説明は 省略します。

　スイッチサイエンスというサイトで
今回の BME280の資料を見つけました。
(興味のある方はそちらを参照して下さい)

