

今回のOLEDに使用されている
制御用ＩＣ SSD1306のデータシートです。

64ページあります。

終わりの方のページに
ＯＬＥＤ初期化のフローチャートが

あります。

初期化のプログラムを実行す
ると、ＯＬＥDが、点灯します。
　ＧＤＤＲＡＭは、初期化されな
い様で、ランダムな点が表示
されてます。

この表示は、表示消去プログラムにて
消去パターンを 00hではなくて0Bh

（ 00001011b）で初期化した画面です。
1byteの Dotが、縦に並んでいるので

このように表示されます。

表示Dot数は、X:128×Y:32です。

この表示は、表示消去プログラムにて
消去パターンを 00hから順次インクリメントした

データで、書き込み表示した画面です。

Graphic Display Data Ram (GDDRAM)

Page0

Page1

Page2

Page3

00h ～ 7Fh

Page4

Page5

Page6

Page7

(左上) (右上)

128x32の OLED
使用メモリ範囲

128x64のOLEDでは
Page0～Page7まで

使用する

80h ～ FFh

100h ～ 17Fh

180h ～ 1FFh

300h ～ 37Fh

380h ～ 3FFh

200h ～ 27Fh

280h ～ 2FFh

GDDRAM
Address

00h 01h 02h ～

80h 81h 82h ～

100h 101h 102h ～

180h 181h 182h ～

200h 201h 202h ～

280h 281h 282h ～

300h 301h 302h ～

380h 381h 382h ～

7Dh 7Eh 7Fh～

FDh FEh FFh～

17Dh 17Eh 17Fh～

1FDh 1FEh 1FFh～

27Dh 27Eh 27Fh～

2FDh 2FEh 2FFh～

37Dh 37Eh 37Fh～

3FDh 3FEh 3FFh～

横Dot数：128

Page0 ～ Page7 全体で 1024 byte(左下) (右下)

GDDRAMの Page内の構成　(Page0の例)

b
7

b
6

b
5

b
4

b
3

b
2

b
1

b
0

0
0
0
H

G
D
D
R
A
M

A
d
d
r
e
s
s

b
7

b
6

b
5

b
4

b
3

b
2

b
1

b
0

0
0
1
H

b
7

b
6

b
5

b
4

b
3

b
2

b
1

b
0

0
0
2
H

b
7

b
6

b
5

b
4

b
3

b
2

b
1

b
0

0
0
3
H

b
7

b
6

b
5

b
4

b
3

b
2

b
1

b
0

0
7
C
H

b
7

b
6

b
5

b
4

b
3

b
2

b
1

b
0

0
7
D
H

b
7

b
6

b
5

b
4

b
3

b
2

b
1

b
0

0
7
E
H

b
7

b
6

b
5

b
4

b
3

b
2

b
1

b
0

0
7
F
H

縦１列が、1byteで
127byteで １Pageが構成される

最下位bitが 上

最上位bitが 下

ASCII文字の BitMapFont Dataに関して

 Windows Mac は、TrueTypeFontなの
で、今回の 用途に使えません。

　BitMapFontのエディタを作って新規
にデータを作る事も 可能ではありま
すが、94文字のデータを作るのは、
結構面倒な作業です。

　昔の MS-DOSでは、ASCII文字は
8x16 dotの BitMapFontでした。
大きさ的には、ちょうどいいです。

　特に DOS/Vと呼ばれる MS-DOSが
Fontを ファイルで持っているので
都合がいいです。

もう、４半世紀前の古い話で 若い人
は MS-DOSは 知らないでしょうね。

で、どっかに MS-DOSシステムのバッ
クアップが残ってないか探しました。

　朝から夕方まで探した末、やっと
見つけました。で、半角 8×16 dotの
ファイルを Getしました。
$JPNHN16.FNT というファイルです。

私も、MS-DOSに関して遥か記憶の彼方
でしたが、まさか MS-DOSのファイル
が、このような形で役に立つとは
思いませんでした。

DOS/Vの 半角FONTファイル フォーマット

Byteデータを 16進 2桁と、ASCII文字
で ダンプする FDUMP.EXEというユー
ティリティを昔作っていました。

　これで、FONTファイルをダンプする
と先頭から、単純に 16byte単位で
FontDataが、入っているようです。

先頭は、ASCIIコード表の制御コード
エリアの NULL です。 先頭から
16x32Byteの制御コードエリアには、
罫線のような記号が入ってました。

 先頭から 512バイトの位置から 20h
のスペースのフォントが入ってまし
た。

　その後に、ASCIIコードの 21h、22h
と順次 16byte単位で文字フォント
データが並んでいる事を確認しまし
た。
　確認は、今回突貫で、ユーティリ
ティプログラムを作成しました。

そして、そのユーティリティで、
SSD1306の表示フォーマットに合う形
に、BitMapを並べ直し新たなフォント
ファイルを作成しました。
（ File名：BMF_8_16.dat ）

文字ばかりでは、分かりにくいので
次に図で説明します。

MS-DOSの文字Font

b7 b6 b5 b4 b3 b2 b1 b0

b7 b6 b5 b4 b3 b2 b1 b0

b7 b6 b5 b4 b3 b2 b1 b0

b7 b6 b5 b4 b3 b2 b1 b0

b7 b6 b5 b4 b3 b2 b1 b0

b7 b6 b5 b4 b3 b2 b1 b0

b7 b6 b5 b4 b3 b2 b1 b0

b7 b6 b5 b4 b3 b2 b1 b0

b7 b6 b5 b4 b3 b2 b1 b0

b7 b6 b5 b4 b3 b2 b1 b0

b7 b6 b5 b4 b3 b2 b1 b0

b7 b6 b5 b4 b3 b2 b1 b0

b7 b6 b5 b4 b3 b2 b1 b0

b7 b6 b5 b4 b3 b2 b1 b0

b7 b6 b5 b4 b3 b2 b1 b0

b7 b6 b5 b4 b3 b2 b1 b0

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Address DATA

SSD1306仕様の文字Font

b
7

b
6

b
5

b
4

b
3

b
2

b
1

b
0

b
7

b
6

b
5

b
4

b
3

b
2

b
1

b
0

b
7

b
6

b
5

b
4

b
3

b
2

b
1

b
0

b
7

b
6

b
5

b
4

b
3

b
2

b
1

b
0

b
7

b
6

b
5

b
4

b
3

b
2

b
1

b
0

b
7

b
6

b
5

b
4

b
3

b
2

b
1

b
0

b
7

b
6

b
5

b
4

b
3

b
2

b
1

b
0

b
7

b
6

b
5

b
4

b
3

b
2

b
1

b
0

0 1 2 3 4 5 6 7

b
7

b
6

b
5

b
4

b
3

b
2

b
1

b
0

b
7

b
6

b
5

b
4

b
3

b
2

b
1

b
0

b
7

b
6

b
5

b
4

b
3

b
2

b
1

b
0

b
7

b
6

b
5

b
4

b
3

b
2

b
1

b
0

b
7

b
6

b
5

b
4

b
3

b
2

b
1

b
0

b
7

b
6

b
5

b
4

b
3

b
2

b
1

b
0

b
7

b
6

b
5

b
4

b
3

b
2

b
1

b
0

b
7

b
6

b
5

b
4

b
3

b
2

b
1

b
0

8 9 1
0

1
1

1
2

1
3

1
4

1
5

Byte列は 90度回転した
様になっていますが、同じ
文字を表示できるように
bit単位で データを並べ
直す必要があります。

この BitMapDataの並び
変換は、パソコンで行い
新たなフォントファイルを

作成しました。

// バッファは、TForm1 クラス内にて、Privateで宣言している
// ---
 buf: array [0..15] of Byte; // DOS/V仕様の BitMapData
 vbuf: array [0..15] of Byte; // SSD1306仕様の BitMapData

//********************************
//** Vbuf（ SSD1306仕様 ）へ **
//** １Bit書き込み **
//********************************
procedure TForm1.setup_vbuf(x, y: Integer);
var
 a, b, p: Integer;
begin
 a := 0;
 if y > 7 then a := 8;
 a := a + x; // 該当Dotのアドレス計算

 b := y mod 8;
 p := 1;
 p := p shl b; // 該当DotのBit位置データ算出(p = p << b;)
 vbuf[a] := vbuf[a] OR p; // bitデータを加える
end;

BitMapFont 並べ替えプログラム ソース（ Delphi ）

b
7

b
6

b
5

b
4

b
3

b
2

b
1

b
0

b
7

b
6

b
5

b
4

b
3

b
2

b
1

b
0

b
7

b
6

b
5

b
4

b
3

b
2

b
1

b
0

b
7

b
6

b
5

b
4

b
3

b
2

b
1

b
0

b
7

b
6

b
5

b
4

b
3

b
2

b
1

b
0

b
7

b
6

b
5

b
4

b
3

b
2

b
1

b
0

b
7

b
6

b
5

b
4

b
3

b
2

b
1

b
0

b
7

b
6

b
5

b
4

b
3

b
2

b
1

b
0

0 1 2 3 4 5 6 7

b
7

b
6

b
5

b
4

b
3

b
2

b
1

b
0

b
7

b
6

b
5

b
4

b
3

b
2

b
1

b
0

b
7

b
6

b
5

b
4

b
3

b
2

b
1

b
0

b
7

b
6

b
5

b
4

b
3

b
2

b
1

b
0

b
7

b
6

b
5

b
4

b
3

b
2

b
1

b
0

b
7

b
6

b
5

b
4

b
3

b
2

b
1

b
0

b
7

b
6

b
5

b
4

b
3

b
2

b
1

b
0

b
7

b
6

b
5

b
4

b
3

b
2

b
1

b
0

8 9 1
0

1
1

1
2

1
3

1
4

1
5

(0,0)
(7,0)

(0,15)

//**
//** フォント グラフィック表示 **
//** -- **
//** 入力： buf[] DOS/V仕様の BitMapData **
//** 出力： vbuf[] SSD1306仕様の BitMapData **
//**
procedure TForm1.font_disp;
var
 ptn: Byte;
 i, j, x, y: Integer;
begin
 for i:=0 to 15 do vbuf[i] := 0; // 出力バッファを一旦消去

 for i:=0 to 15 do // Font byte数のループ（ 縦:16byteのループ ）
 begin
 y := i;
 ptn := buf[i]; // 元データから、1byteビットデータを取り出す
 for j:=0 to 7 do // 横:8bitのループ
 begin
 x := j;
 if (ptn and $80) <> 0 then // 該当bitが、１か確認
 setup_vbuf(x, y); // １であれば、出力バッファに１を立てる
 ptn := ptn shl 1: // ビット位置更新（ ptn を 1bit 左シフト ）
 end;
 end;
end;

 タイトルがフォントグラフィック表示と
なってますが、ビット並び替え以外に グ
ラフィック表示機能も実装していました。

 余分な表示機能があると分かりにくいと
思ったので、ビット並び替え機能だけに
ソースを整理しました。

新たに作成したSSD1306仕様の BMF_8_16.datのフォーマット

 　(20H)
0

ファイル先頭
　　Byte位置

 ！(21H)
16

 ”(22H)
32

 ＃(23H)
48

 ＄(24H)
64

 ％(25H)
80

 ＆(26H)
96

 ’(27H)
112

 （(28H)
128

 ）(29H)
144

 ＊(2AH)
160

176

 ＋(2BH)
192

 ，(2CH)
208

 －(2DH)
224

 ．(2EH)
240

 ／(2FH)
256

 ０(30H)
272

 １(31H)
288

304

 ｐ(70H)
1264

 ｑ(71H)
1280

1296

 ｓ(73H)
1344

 ｔ(74H)
1360

 u (75H)
1376

 ｖ(76H)
1392

 ｗ(77H)
1408

 ｘ(78H)
1424

 ｙ(79H)
1440

 ｚ(7AH)
1456

 ｛(7BH)
1472

 ｜(7CH)
1488

 ｝(7DH)
1504

1328

 ｒ(72H)
1312

 ~ (7EH)
1520

BMF_8_16.datのデータをR8Cマイコンの
アセンブラソースにしたデータ

; *** BitMapFont 8x16 *** (BMF_8x16.inc)
; --
bmf_8x16_asc:
; Code = 20
 .byte 000h, 000h, 000h, 000h, 000h, 000h, 000h, 000h
 .byte 000h, 000h, 000h, 000h, 000h, 000h, 000h, 000h
; Code = 21
 .byte 000h, 000h, 000h, 03Ch, 0FEh, 03Ch, 000h, 000h
 .byte 000h, 000h, 000h, 020h, 073h, 020h, 000h, 000h
; Code = 22
 .byte 000h, 000h, 003h, 00Fh, 000h, 00Fh, 003h, 000h
 .byte 000h, 000h, 000h, 000h, 000h, 000h, 000h, 000h
; Code = 23
 .byte 000h, 040h, 0FCh, 020h, 020h, 0FEh, 010h, 000h
 .byte 000h, 008h, 07Fh, 004h, 004h, 03Fh, 002h, 000h

先頭４文字分だけ
切り出しました。

#define OLED_ADDR 0x3C // IIC Address

// ＊＊＊　　関数プロトタイプ宣言　　＊＊＊
// --
BYTE *get_dsd_data(WORD no); // コマンドデータの取り出し
BYTE *get_bmf_8x16_asc(WORD c); // ASCIIコードのフォントデータ取得
WORD exp2_pattern(BYTE p); // WORD <-- BYTEパターンを２倍にする

void dt_oled1_init(void); // DSD TECH OLED の 初期化
void dt_oled1_fill(BYTE ptn); // 画面フィルインコマンド

void put_string_8x16(int x, int y, char *txt); // 8x16 文字列出力
void put_char_8x16(int x, int y, char code); // 8x16 ASCII１文字出力

void put_string_16x32(int x, int y, char *txt); // 16x32 文字列出力
void put_char_16x32(int x, int y, char code); // 16x32 ASCII文字出力

dsd_OLED_sub.h の一部です。
　(dsd_OLED_sub.cも参照の事)

R8Cマイコン OLED関数

23mm

; ***
; **　○　8bit --> 16bit パターン２倍化処理 **
; ** --- **
; ** 引数：　R1L： Byte Pattern **
; ** 関数値： R0 : Word Pattern **
; ***
 .glb $exp2_pattern ; グローバル宣言
$exp2_pattern: ; ラベル（ 関数エントリアドレス ）
 push.w r2 ; R2 退避
 mov.w #8, r2 ; R2 Loopカウンタ初期値 = 8
p003:
 shl.w #2, r0 ; R0 <-- R0 << 2
 tst.b #80h, r1l ; R1L.b7 は Zero か ？
 jz p004 ; Zero で あれば
 or.w #3, r0 ; Zero でなければ R0 = R0 + 3
p004:
 shl.b #1, r1l ; R1L <-- R1L << 1
 sub.w #1, r2 ; R2 = R2 - 1 Loopカウンタデクリメント
 jnz p003 ; Zeroで無ければ、P003へ行く
 pop.w r2 ; R2 復帰
 rts ; リターン

R8Cマイコン側で行っている
フォントの縦横２倍拡張処理

(1/2)

Byte --> Word
拡張のイメージ

union Word_Byte {
 WORD w; // 2byte変数１個
 BYTE b[2];// 1byte変数２個
};
static union Word_Byte Wb; // Word Byteの共用体
static BYTE Bufx4[64]; // 縦横２倍サイズのバッファ

// ★★★　　関数の一部分の切り出し　　★★★
 for(i=0; i<16; i++)
 {
 Wb.w = exp2_pattern(ptr[i]);
　　　　　　　　　　　 // Byte pattern -> Word pattern変換
 if(i < 8) q1 = i * 2; // (前半 8byte)左上Byte位置
 else q1 = 16 + i * 2; // (後半 8byte)左上Byte位置
 q2 = q1 + 1; // 右上Byte位置
 q3 = q1 + 16; // 左下Byte位置
 q4 = q3 + 1; // 右下Byte位置
 Bufx4[q1] = Wb.b[0]; // 左上 Pattern data 格納
 Bufx4[q2] = Wb.b[0]; // 右上 Pattern data 格納
 Bufx4[q3] = Wb.b[1]; // 左下 Pattern data 格納
 Bufx4[q4] = Wb.b[1]; // 右下 Pattern data 格納
 }

R8Cマイコン側で行っている
フォントの縦横２倍拡張処理

(2/2)

左上 右上

左下 右下

