
ラズパイに RTCを接続する

ラズパイは、名刺サイズの小さなマイコン基板

で右の画像は Raspberry Pi 3B です。

CPUは ARM Cortex-A53(　４コア、1.2GHz　)で メモ

リ 1GByteです。 で、Raspbian OSという Linuxを マイ

クロSDカードに書き込んで起動する事が出来ます。

入出力には、USB 2.0ポート４個、HDMI映像出力、

ネットワーク 10/100Mbps イーサネット、カメラコネク

タ、GPIOという汎用I/Oポート付きです。

　このラズパイの事を初めて知った時は、パソ

コン並みの機能が、この小さな基板で実現出

来る事に驚きました。　で、今回は GPIOの端

子の一部を I2Cインタフェースとして設定して

I2Cの RTCを接続して時刻の読み書きが出来

るようにします。
マイクロSDカード

Raspbian OS書き込み済み

GPIO　／　一部を
I2C端子として使用

OSを 再インストール

　私の ラズパイ 3Bは、３年前の Raspbian OS

なので、最新版のOSを入れ直す事にしました。

　で、ダウンロードサイトを探したら Raspberry

Pi Imager なるソフトがあって、何と　Raspbian

OS を ダウンロードして、そのまま SDカードに

Raspbian OS を書き込んでくれる便利なソフト

でした。

　過去やった時は、SDカードを 特殊なフォー

マットで初期化したり、やや面倒でしたが、これ

は楽です。　OSを 書き込んだ SDカードを、ラ

ズパイに挿入して 電源ONすれば、あっさり

Raspbian OS が　起動しました。

上の画像は、Raspberry Pi Imager の フォーム画

像です。　OS　と ストレージ（SDカード）を、選択

して　書き込みボタンをクリックするだけです。

Raspberry Pi Imager 現在のバージョンは

v1.7.2 です。（ 2022-05-11 現在 ）　

Raspbian OS上に、開発環境を構築

最初の起動時の初期設定が終わったら、画面

左上の 黒いアイコン LXTerminal を クリックし

ます。 　タ―ミナルの ウィンドウが開いたら順

次、コマンドを入力して行きますが、その前に、

イーサネットコネクタに LANケーブルを差し込

んで下さい。　 まずは、OSインストール直後

の、アップデート確認です。

①　sudo apt update

②　sudo apt upgrade -y

I2Cを使うために wiringPi をインストールしま

す。 まず、git の インストール

③　sudo apt-get install git-core

次に、分かりやすい場所にディレクトリを

作成します。

④　mkdir wiringPi-source

LXTerminal

作成したディレクトリに、移動します。

⑤　cd wiringPi-source

次のコマンドは、やや長いので次のページ

に記述します。

gitを 使い wiringPi を ダウンロードします。

⑥　sudo git clone https://github.com/wiringPi/wiringPi.git

ダウンロードした　wiringPiのディレクトリに移ります。

⑦　cd wiringPi

wiringPi ディレクトリ内で、build ファイルを実行します。

⑧　sudo ./build

wiringPi ディレクトリの内容を確認します。

⑨ ls

ファイル、サブディレクトリの一覧が表示されます。

wiringPi と wiringPiD というフォルダが囲ってありますが、

元の資料通りになる事は確認しましたが、正直 何を意味するのかが

いまいち分かりません。　以上で必要なライブラリは、

ラズベリーパイに用意されました。 と 資料には 書いてあります。

ワークディレクトリと テキストエディタ

　Raspbian OSの場合は、gcc は、標準で入っているようで、すぐ使

う事は出来ました。　まず、自分の ホームディレクトリ内に 作業用

のディレクトリを作成し、その中でプログラムの開発作業をするとい

いです。　

例えば、ディレクトリ名 work であれば、

mkdir work で、作成して下さい。

cd work で、中に入って作業を して下さい。

ソースファイルを作成する テキストエディタは、左上のイチゴアイコ

ンをクリックしてアクセサリ内の Text Editor を使いました。 ①

アクセサリ内の Text Editor を 右クリックすると

更にメニューが出てきて デスクトップに追加を

クリックすると、デスクトップ上に Text Editorの

アイコンが、貼り付けられます。 ②

ダブルクリックすると すぐ

 Text Editor が起動します。 ③

1

2

3

#include <stdio.h>

int main(int argc, char *argv[])
{
 printf("Hello World!/n");
 return 0;
}

gccの コマンド実行

　ワークディレクトリ内にて、テスト用の C ソースファ

イル（ hello.c ）を作成します。

hello.c を ワークディレクトリ内に保存したら、 端末

ウィンドウ内にて gcc コマンドを実行します。

（ ｇｃｃコマンドは　コンパイル、リンクを 行います。）

gcc hello.c -o hello

次に、hello を実行します。

./hello　　（ 最初に ./ を付けます。）

ｇｃｃには、細かいオプション指定が、ありますが

ここでは、説明は省略します。

ビルド用シェルスクリプトの作成

　 デバッグ作業は、何回もソース修正、コンパイル、

リンク、実行を繰り返す作業です。

　特にビルド時のコマンドは、同じ文字列を入力する

事になるので、シェルスクリプトにした方が楽です。

シェルスクリプトは、複数のコマンドを 自動実行する

機能です。　ここでは　cl.sh という 名前で 以下の

３行を入力した テキストファイルを 作成します。

#!/bin/bash
echo "* ビルド： $1.c"
gcc $1.c -o $1 && ./$1

hello.c を ビルド、実行する場合は端末ウィンドウで

bash cl.sh hello　　と 入力します。

* ビルド： hello.c　　この行は表示されます。

gcc hello.c -o hello　この行は 非表示です。

./hello　　　　　　　 この行も 非表示です。

Hello World! 　Hello の実行で 表示されます。

シェルスクリプトを 簡単に説明

　前ページの cl.sh の 中身で 分かる範囲で説明し

ます。 #!/bin/bash
echo "* ビルド： $1.c"
gcc $1.c -o $1 && ./$1

１行目の #!/bin/bash は、シェルスクリプトを作る時

は、毎回のお約束と思って下さい。

echo "* ビルド： $1.c" は、ダブルコートで囲んだ文

字列を、表示するコマンドです。　この中で $1 が、

ありますが、これは cl.sh の コマンドパラメータです。

例を示すと bash cl.sh hello 文字列内の

hello の 語が、$1 の所に 展開されます。

echo "* ビルド： $1.c"

gcc $1.c -o $1 && ./$1

　は、以下に置き換えられるという事です。

echo "* ビルド： hello.c"

gcc hello.c -o hello && ./hello

 最後に、 && は、何かというと、 && の 左側の式が

正常終了したら、 && の 右側の ./hello が、実行

されます。　gcc の 処理が エラー等で 異常終了したら

./hello は、実行されません。　cl.sh は 一番基本的

な シェルスクリプトです。　今回は、もう一つシェルスク

リプト（ clw.sh ）を 作成します。

#!/bin/bash
echo "* ビルド： $1.c"
gcc $1.c -o $1 -lwiringPi && ./$1

 -l は、リンクするライブラリファイルを指定するオプ

ションです。　　wiringPi は、今回ダウンロードして

ビルドした ラズパイの GPIO端子をアクセスするため

の ライブラリを リンクするという指定です。

　この、ライブラリ指定をしておかないと、GPIOを

アクセスする関数を、使用出来ません。

I2C関数も入っています。

 では、今回 LEDを周期的に点滅させるプログラムの

ソースを 右に示します。 この ソースプログラムを

test_led.c という名前で 保存します。　

そして、ビルドのコマンドは

bash clw.sh test_led と入力します。

　これで、エラーが、出なければプログラムは、生成

されて 実行しているはずです。

　但し、10秒ほど、だんまりになります。　

GPIO端子に LEDを付けていなければ、動作確認が

出来ません。　という事で

GPIOに接続できる形で

抵抗 1KΩと LEDを

用意する必要があります。

右の ４ピン 2列の ピン

フレームに 1KΩ抵抗と

LEDを 付けました。

wiringPi関数をつかって
LEDを点滅するプログラムを作る #include <wiringPi.h>

#define GPIO4 4

int main(void)
{
 int i;

 if(wiringPiSetupGpio() == -1) return 1;

 pinMode(GPIO4, OUTPUT);
 for(i=0; i<10; i++)
 {

digitalWrite(GPIO4, 0);
delay(100);
digitalWrite(GPIO4, 1);
delay(900);

 }
 digitalWrite(GPIO4, 1);

 return 0;
}

LED点滅動作確認用ハード回路図

ラズパイの GPIO端子について

 右に、ラズパイのGPIO端子ピン番号、信号名一覧表

を示します。

　1KΩ抵抗と、LEDは、1ピン／3.3Vと 3ピン／GPIO 4

の間に 直列接続しました。　下図を 参照の事。

ちなみに、　I2Cの端子は、3ピン／GPIO 2 = SDA で、

5ピン／GPIO 3 = SCL　です。

1pin/3.3V

7pin/GPIO 4

1
K

ラズパイの CPU冷却について

　ちょっと、横道にそれますが、

ラズパイ４は、CPU冷却は、必須のようですが、

私の ラズパイ 3Bも 長時間使っていると CPUが 結構

熱を持ってきます。　やはり冷やした方が、寿命の面で

いいのではないかと思い 空冷ファンを付ける事にしま

した。 さしあたり、手元にあった 80mm角の 薄型FANを

ラズパイの透明ケースの上に蓋を外して載せてます。

　12VのFANを 6Vの小型ACアダプタが　あったので、

6Vで　回転させています。　通常より回転は遅いです

が、その分 静かに回っています。

　40mm角サイズのFANの方が、ラズパイの透明ケース

の蓋に、スマートに付けられそうです。

 次は、LED点滅プログラムの ビルドと、実行時の

LED点滅動作の動画を　ご覧ください。

I2Cデバイスを接続するケーブル作成

3.3V ／1

GPIO2／3

GPIO3／5

GPIO4／7

GND ／9

GPIO左上部分

Vdd

SDA

SCL

GND

コネクタ

　上記、ケーブルを用意して、最初は、アクセスが　

簡単で 動作確認しやすい 小型OLEDの キャラクタ

ディスプレィで、I2Cアクセスを　試してみようと思い

ます。　 下の画像の 物です。

画像の物は、緑色表示の 16文字×２行の OLED

キャラクタディスプレィです。　I2Cアドレスは 3Chです。

このディスプレィのコマンドを、簡易 I2C電文形式で

示します。

初期化：

3Ch 00h 01h①

 I2C Control Byte/Write

 Reg Address

 Data

3Ch 00h 02h②

3Ch 00h 0Fh③

3Ch 00h 01h④

初期化は、以上です。

（ コマンド間に Wait を入れて下さい。 ）

Wait 2ms

Wait 20ms

Wait 2ms

Wait 20ms

3Ch 00h 02h①

１行目　文字列表示：

Wait 10ms

3Ch 40h 'A'②
Wait 1ms

3Ch 40h 'c'③
Wait 1ms

3Ch 40h 'c'④
Wait 1ms

3Ch 40h 'e'⑤
Wait 1ms

3Ch 40h 's'⑥
Wait 1ms

3Ch 40h '-'⑧
Wait 1ms

3Ch 40h 'T'⑨
Wait 1ms

3Ch 40h 'e'⑩
Wait 1ms

3Ch 40h 's'⑪
Wait 1ms

3Ch 40h 't'⑫
Wait 1ms

１行目 文字列表示は、以上です。

表示器に Access-Test. と

表示されれば、ＯＫです。

今回の OLED表示器の出力テスト

のソースを、次に、説明します。

3Ch 40h '.'⑬
Wait 1ms

3Ch 40h 's'⑦
Wait 1ms

wiringPiI2C 関数を
使用したプログラム

　今回のプログラム先頭の１/３です。

先頭で取り込んでいる

#include <wiringPi.h>

#include <wiringPiI2C.h>

の 2行が wiringPiI2C関数を 呼び出す上で必要に

なります。

OLED_I2C_Adr が、OLED表示器の I2Cアドレスです。

OLED_Cmd が、OLED表示器のコマンド書き込み

　　　　　　　レジスタアドレスです。

OLED_Data が、OLED表示器のデータ書き込み

　　　　　　　レジスタアドレスです。

メイン関数では、init_oled()；初期化処理と、

print_oled_1()； テスト文字列表示処理の、

２つの関数を 呼び出しています。

#include <stdio.h>
#include <wiringPi.h>
#include <wiringPiI2C.h>

#define OLED_I2C_Adr 0x3c
#define OLED_Cmd 0x00
#define OLED_Data 0x40

int init_oled(void);
void print_oled_1(int fd);

int main(void)
{

int fd;

fd = init_oled();
print_oled_1(fd);

}

int　init_oled(void)
{
　　int　fd;

　　fd = wiringPiI2CSetup(OLED_I2C_Adr);

　　wiringPiI2CWriteReg8(fd, OLED_Cmd, 0x01);
　　delay(20);
　　wiringPiI2CWriteReg8(fd, OLED_Cmd, 0x02);
　　delay(2);
　　wiringPiI2CWriteReg8(fd, OLED_Cmd, 0x0F);
　　delay(2);
　　wiringPiI2CWriteReg8(fd, OLED_Cmd, 0x01);
　　delay(20);

　　return fd;
}

void print_oled_1(int fd)
{

wiringPiI2CWriteReg8(fd, OLED_Cmd, 0x02);
delay(20);

wiringPiI2CWriteReg8(fd, OLED_Data, 'A');
delay(1);
wiringPiI2CWriteReg8(fd, OLED_Data, 'c');
delay(1);
wiringPiI2CWriteReg8(fd, OLED_Data, 'c');
delay(1);
wiringPiI2CWriteReg8(fd, OLED_Data, 'e');
delay(1);
wiringPiI2CWriteReg8(fd, OLED_Data, 's');
delay(1);
wiringPiI2CWriteReg8(fd, OLED_Data, 's');
delay(1);
wiringPiI2CWriteReg8(fd, OLED_Data, '-');
delay(1);
wiringPiI2CWriteReg8(fd, OLED_Data, 'T');
delay(1);
wiringPiI2CWriteReg8(fd, OLED_Data, 'e');
delay(1);
wiringPiI2CWriteReg8(fd, OLED_Data, 's');
delay(1);
wiringPiI2CWriteReg8(fd, OLED_Data, 't');
delay(1);

}

　今回のプログラム残り、2/3 と 3/3 です。

左が 初期化処理、右が テスト文字列表示処理

です。やはり、I2C処理のプログラムは、長く

なりますね。

wiringPiI2C関数では
RX8900をアクセス出来ない

　予想してましたが、やはり wiringPiI2Cのラ

イブラリでは、セイコーエプソンの RTC／

RX8900は アクセス出来ない事が判明しました。

何故かというと wiringPiI2Cの関数は、シンプ

ルな仕様で初心者の方には使いやすいと思いま

す。 但し I2Cの電文が BYTE単位 WORD単位でし

か出せない仕様なのと 致命的なのは、リピート

スタートコンディションを使った電文を出せな

い事です。

　RX8900をアクセスするためには、リピートス

タートコンディションが必要なのです。

　という事で、ラズパイには 他にも I2Cも含む

GPIOの ライブラリが いくつかあるらしいので

調べてみます。

 ネットで調べてみると　ラズパイ用の I2Cは 何

種類かあるようで どれがいいのか　及びライブラ

リ関数などの使い方も よく分かりません。

　ネット上にＵｐされてる資料は、断片的な解説

が多いので、多数の資料を見て 役に立ちそうなの

を複数 印刷しました。複数の資料を見比べながら

判断したのは、piGPIO というライブラリでした。

　wiringPiのライブラリは スタティックライブラ

リで リンク時に １本の実行ファイルとして生成

されます。そして多分 wiringPiのライブラリは、

ラズパイの GPIO端子の I/Oポートを直接アクセス

しているのではと思われます。

　それに対し　piGPIO本体は システムに登録され

た DLLではないかと思われます。　そのせいか、

実行時に管理者権限が、要求されます。 コマンド

入力時 sudo を 付けて実行すれば実行できます。

Raspbian側の I2C設定も有効にする必要が ありま

す。

LXターミナルで 以下のコマンドを入力します。

sudo apt-get update

sudo apt-get install pigpio
参考資料に書いてあったこの２行を実行したら

すでに最新バージョンです。というようなメッ

セージが出てきました。　pigpioは、Raspbianに

最初から入っていたのかもしれません。

　次は、Raspbian上で I2Cのインタフェースを

有効に 設定して再起動する必要があります。

左上イチゴアイコンをクリックして、設定 -->

Raspberry Pi の設定 をクリックします。①

Raspberry Piの設定ウィンドウが表示されます。

インターフェイスのタブをクリックします。

左の I2Cに対応する右の スイッチをクリック ②

して ON状態にします。　

そして 再起動を行って下さい。

piGPIOの 初期設定

１

2

gccで pigpioを使う

　gccで、pigpioを使用する上で、必要となる コー

ディングを示します。

　ソースファイル先頭で、

#include <pigpio.h>

#include <wiringPi.h>　<- は delay関数などの

わずかな時間待ちを入れる場合は、一緒にインク

ルードして下さい。

初期化処理：
int sts = gpioInitialise();

を呼ぶ、sts が マイナスであればエラーで中断。

次に

int fd = i2cOpen(1, I2C_Address, 0);

を呼ぶ、fd は、ハンドル値となる。

終了処理：
 i2cClose(fd);

 gpioTerminate();

まずは、wiringPiと同様の レジスタ指定の

１Byte書き込み、読み出し関数を示します。

Byte書き込み：
int　fd： ハンドル値(I2Cアドレスを保持)

Byte reg_adr： I2Cデバイスのレジアドレス

Byte data： 書き込むデータ

int i2cWriteByteData(fd, reg_adr, data);

Byte読み出し：
int　fd： ハンドル値(I2Cアドレスを保持)

Byte reg_adr： I2Cデバイスのレジアドレス

関数値： 読み出しデータ（ 多分 下位Byte ）

int i2cReadByteData(fd, reg_adr);

pigpioで I2Cスレーブをアクセス
Block書き込み：
int　fd： ハンドル値(I2Cアドレスを保持)

Byte reg_adr： I2Cデバイスのレジアドレス

char *buf： データバッファ

int cnt： 書き込みデータ長

int i2cWriteBlockData(fd, reg_adr, buf, cnt);

Block読み出し：
int　fd： ハンドル値(I2Cアドレスを保持)

Byte reg_adr： I2Cデバイスのレジアドレス

char *buf： データバッファ

int i2cReadBlockData(fd, reg_adr, buf);

上記 ブロック読み出し関数は　読み出しByte数を引数で

渡していません。 ハード的な I2Cの伝送仕様では、読み

出し時、マスタは、最終 Byteを受け取ったら、データ

読み出しを中断する事をスレーブに伝えるため、Nak を

返す事になってます。つまり、受信文字数を 引数として

渡して無いと Nakを返すタイミングが分からないはずで

す。？ この関数 仕様的におかしい。と思いますけど...。

もう１種類 Blockアクセス関数が ありました：
int　fd： ハンドル値(I2Cアドレスを保持)

Byte reg_adr： I2Cデバイスのレジアドレス

char *buf： データバッファ

int cnt： 書き込み or 読み出し データ長

int i2cWriteI2CBlockData(fd, reg_adr, buf, cnt);

int i2cReadI2CBlockData(fd, reg_adr, buf, cnt);

 この関数は 引数仕様的には まともな気がします。

それと、この引数では、reg_adrを デバイスに書き込んで

読み出し位置を確定して、それからブロックデータを、

読み出すものと思われます。　これを、１本の I2C電文で

やろうとすれば、リピートスタートコンディションを使わ

ないと実現できません。 　電文を １Byteの書き込みと

複数Byteの読み出しの ２本に分けてあると

RX8900のアクセスは アウト　に なります。

　１本の I2C電文で リピートスタートコンディションを

使用している事を期待したいのですが、関数の中身は、

どうなっているのか 分かりません。

分からないので やるだけやってみます。

RX8900

8
9
0
0

CN1

VDD

SDA

GND

1
2
3
4

8
7
6
5

1

2

3

4

1
F

0
.
1
u

1
0
u

1
0
0

1
0
K

秋月電子 RX8900モジュール
ベース基板回路図

前回の動画 最終ページの RX8900の基板

回路図で、コネクタ部分を今回の仕様に

合わせて変更しました。

SCL

追記： 10KΩは 付けずに 1pinは オープンに

　　して下さい。FOUTを 出さない設定です。

RX8900アクセスのプログラム

　RX8900の 設定のための電文仕様は、前回の

動画にて説明していますので、そちらを参照し

て下さい。　用意する機能としては

①　RTCの初期化

②　RTC時刻の読み出し

③　RTC時刻の書き込み

④　VLFフラグの確認、初期化機能

　FOUT出力の機能、１秒割込み機能は 今回は

付けません。

　④の VLFフラグは ICの電圧が VLOW電圧を下

回った時、または 水晶発振器が 約 10ms 停止

した時で、VLFが ONの時は、自動的に RTCの初

期化を行います。

このような仕様で、プログラムを作成します。

int i2cWriteI2CBlockData(fd, reg_adr, buf, cnt);

int i2cReadI2CBlockData(fd, reg_adr, buf, cnt);

 ラズパイにて、RX8900を 以下の pigpio関数を使

用して gccにて プログラムを作成し アクセステス

トを行いました。 正常にアクセス出来ました。

 左に書いている４つの機能のサブプログラムも

出来ました。　という事で、RTC/RX8900の 時刻の

書き込み、読み出しが 出来ます。 但し、ラズパ

イ上で 一つのアプリケーションとして独立して、

RTCの時刻の読み出し 書き込みが出来るだけだと

意味がないです。 システム起動時に Raspbianで

管理している ローカルタイムに RTCの時刻を自動

的に設定出来ないと、ラズパイのシステムとして

意味がないです。 という事で システム起動時に

RTCの時刻を ラズパイのシステムに設定出来るよ

うにしてみます。

Linuxシステム時刻の設定

　Linuxのコマンドで、時刻を表示、設定する

date というコマンドがあります。

時刻を表示する時：

date
2022年 5月 18日 水曜日 23:29:29 JST 　のように表示

されます。

時刻を設定する時：

sudo date -s "23;49;00 05/18/2022"　入力で

 2022年 5月18日 23時49分が 設定出来ます。

　この dateコマンドの パラメータ部分に gccの

プログラムで生成した 現在時刻の文字列を 流し

こめないかと考えたのです。 コマンド間で、I/O

リダイレクションとか パイプとかの機能があるの

で、何とかなるのではと思っていましたが、コマ

ンドパラメータに 文字列を 流し込む手段は、見

つけられませんでした。ここで、行き詰まってい

ましたが、別の手段を思いつきました。

　

　gccの、文字列操作関数の種類、機能を調べてい

る時、たまたま system(char *cmd); 関数が、

目に留まりました。 一行のコマンドライン文字列

を与えて実行できる関数です。　であれば、

sudo date -s "hh;mm;ss MM/DD/YYYY" の文字列を

gccで作成して、system関数の 引数として渡せば

ローカル時刻が 設定出来るのではと思い、やって

みたら出来ました。

　あとは、システム起動時に このプログラムを

呼び出す仕組みを作れば、ＯＫとなります。

　この仕組みを実現するには、/etc/rc.local 設

定ファイルを 編集すれば出来ます。rc.local は

起動時に実行されるスクリプトファイルです。 そ

のファイルの最後に exit 0 がありますので、そ

の前の行に

cd /home/take/take　今回のプログラムの格納場所

./rtc_8900 -sst 今回のプログラム名

の２行を 挿入しました。これでシステム起動時に

RTCの時刻を設定する事が出来ました。

　細かい話ですが、/etc/rc.local ですが、

GUIのテキストエディタでは、ファイル設定が、

読み出し専用になっているので、変更できませ

ん。 CUI環境で使う vi エディタで、管理者権

限で 編集する必要が あります。

sudo vi /etc/rc.local

vi エディタは、使い方を ネットで調べてから

使用して下さい。 コマンドで動かすエディタな

ので、最初は悩みます。

　最後に 保存する時は、:wq!　で、保存終了

して下さい。

　ちなみに rtc_8900 のソースは rtc_8900.c

１本です。　250行ぐらいのプログラムなので、

大した事はないと思います。今回も ラズパイ上

の ワークディレクトリ内のファイル一式を、ダ

ウンロード出来るように しておきます。

rtc_8900プログラムの使い方

　今回作成した RTC/RX8900をアクセスする

プログラム名は、rtc_8900 です。

rtc_8900 は 管理者権限が無いと 動きません。

　ここでは、パラメータの与え方で どのような

機能があるかを 説明します。

①　パラメータ無しは、RTC時刻の表示です。

sudo ./rtc_8900

YY-MM-DD/hh:mm:ss

　　RTC時刻を 上記 Formatにて表示します。

②　-rcw パラメータは、RTC時刻の設定です。

　　時刻は、年 月 日 時 分 秒の順で 各項目

　　２文字で、1 の場合は 必ず 01 と入力して

　　下さい。

sudo ./rtc_8900 -rcw YY-MM-DD/hh:mm:ss

例） sudo ./rtc_8900 -rcw 22-05-20/12:30:00

③　RTC時刻を、Raspbian OSに 設定する場合。

　　-sst の パラメータを使用します。

sudo ./rtc_8900 -sst

　　起動時 /etc/rc.localにて自動実行する場合

　　画面上は、何も表示されませんが、

　　ターミナル窓で、上記コマンドを入力すると

　　date コマンドで表示される Formatで、設定

　　された時刻が表示されます。

例）2022年 5月 20日 金曜日 11:17:45 JST

