
RX220マイコンプログラミング３　概要

　今回の動画から、RX220で使用する I/O処理

の ライブラリモジュールを作る方向で、やって

行こうと思います。 今回は初期化処理で、最も

基本的なクロック周波数の切り替えと、インタ

ーバルタイマのモジュールを作成しました。

　以前、R8Cマイコンにおいて I/O処理のライブ

ラリモジュールの ソースを 複数作成し IOCS

（ インプット、アウトプット、コントロール、システ

ム ）という事で　名前を付けていました。

　今回は RX22_IOCS という事で、同様に、順

次機能を作成していこうと思います。

　今回は、初回なのでまだ、３つのソースファイ

ルだけです。

①　RX22_iocs.h // 関数群のプロトタイプ宣言

②　RX22_iocs_init.c　// クロック周波数切り替え他

③　RX22_iocs_ivl_timer.c // インターバルタイマ

どのような関数を、実装しているかは、次のペー

ジで、ヘッダファイルの内容を紹介します。

　関数の関数値や、引数部分の データ型に

_UBYTE、_UWORD、_UINT を 使用しております

が、これらの型は標準で入っている typedefine.h

に、宣言してあった型です。

// Source File : RX22_iocs_init.c プロトタイプ宣言
// ---
void　　enable_irq(void);　　　　　　　 // CPU I Flag 割り込みを許可する
void　　disable_irq(void); // CPU I Flag 割り込みを禁止する
_UBYTE　chk_cpu_clock(void); // クロック設定周波数 確認用
_UBYTE　setup_main_clk_20m(void); // メインクロック 20MHz 切り替え
_UBYTE　setup_hoco_clk_32m(void);　　　 // HOCOクロック 32MHz 切り替え
void　　setup_wdt(void);　　　　　　　　// ウォッチドッグタイマー起動
void　　refresh_wdt(void);　　　　　　 // ウォッチドッグタイマー リフレッシュ
void　　soft_cpu_reset(void);　　　　　 // ソフトによる CPU リセット
void　　nulls(_UBYTE *ptr, int　cnt);　 // メモリブロックの Null 初期化

// Source File : RX22_iocs_ivl_timer.c プロトタイプ宣言
// ---
void setup_interval_timer(void); 　　　// インターバルタイマー起動
_UINT get_free_ctr(void); // 1msフリーランタイマの読み出し
void set_timer_1m1(_UWORD cnt); 　　　// 1ms単位減算タイマー１ 初期値 設定
_UWORD get_timer_1m1(void); // 1ms単位減算タイマー１ 現在の 残り時間 読み出し
void set_timer_1m2(_UWORD cnt);　　 // 1ms単位減算タイマー２ 初期値 設定
_UWORD get_timer_1m2(void); // 1ms単位減算タイマー２ 現在の 残り時間 読み出し
void set_timer_10m1(_UWORD cnt); // 10ms単位減算タイマー１ 初期値 設定
_UWORD get_timer_10m1(void); // 10ms単位減算タイマー１ 現在の 残り時間 読み出し
void set_timer_10m2(_UWORD cnt); // 10ms単位減算タイマー２ 初期値 設定
_UWORD get_timer_10m2(void); // 10ms単位減算タイマー２ 現在の 残り時間 読み出し

　RX220マイコン発売開始から、わりと早い時

期に、RX２２０マイコンのプログラミング記事を

ブログ等に Upしておられる諸先輩方の 資料を

参考にして最初、試してみましたが、何か抜け

てるようで、割り込みが動きませんでした。

　それと不思議に思う事として、周辺回路の割

り込み許可フラグの設定は、当然必要ですが

CPUの PSWの　I フラグは、どこで設定してい

るのだろうと不思議に思いました。

　最初、割り込みが動かないのは、CPUの I フ

ラグが 0 のまま（ 割り込み禁止 ）なのだろうと

思い、I フラグを セット、リセットする機能をま

ず、実装しようと　考えました。　

因みに、ＣＰＵの PSWのフラグを

直接Ｃ言語で 操作する事は 出来ません。

割り込み処理登録に 要注意
　ＣＰＵのＰＳＷフラグは、アセンブラでしか操作

出来ないので、まずはインラインアセンブラは

どのように記述するのか調べる必要があります。

//**

//** CPU I Flag 割り込み 許可にする **

//** スーパーバイザモードでのみ有効 **

//**

#pragma inline_asm enable_irq　// インライン宣言

void enable_irq(void)

{

　　setpsw　I;　　// CPU 割り込みフラグ（ 有効 ）

}

　インラインアセンブラの宣言は、#pragma

inline_asm enable_irq　の下に　通常の 関数名(　

enable_irq) を 付けたＣ言語の関数のような 器の中に

１行の アセンブラステートメント　setpsw I; （ I フラグ

を 1 にします ） を 入れます。複数行も入れられます。
　

この機能を呼び出す時は、通常の関数呼び出しと

同様に　enable_irq(); で呼び出せます。

割り込み禁止の場合は、以下の記述になります。

//**

//** CPU I Flag 割り込み 禁止にする **

//** スーパーバイザモードでのみ有効　　**

//**

#pragma inline_asm disable_irq

void disable_irq(void)

{

　　clrpsw　I;　　// CPU 割り込みフラグ（ 禁止 ）

}

　先ほどと、同様で 関数名を換えて setpsw I;　を

clrpsw I; に 換えるだけです。

　この機能を呼び出す時は、通常の関数呼び出しと

同様に　disable_irq(); で呼び出せます。

この ２本の インラインアセンブラ関数は、

RX22_iocs_init.c　内に実装してます。

左の関数上のコメントに スーパーバイザモードで

のみ有効 と書いてますが、I フラグの操作は

スーパーバイザモードでしか行えない。という事

です。　RX220マイコンは起動直後は、スーパーバ

イザモードで、動いてます。 意図的に ユーザー

モードに切り替える処理をしない限りスーパーバ

イザモードです。

　しかし、enable_irq()を 呼び出しても割り込み

処理は、走りませんでした。 今まで、私は、割り

込み処理は、H8マイコンでも、R8Cマイコンでもア

センブラで記述していました。　割り込み可変ベ

クタテーブルが、アセンブラで記述されていた事

もあり、自分にとっては、アセンブラの方が作り

やすかったのです。ところが、RXになってプロ

ジェクトのフォルダ内に、アセンブラらしき拡張

子のファイルがありません。 よって Ｃ言語にて

#pragma interrupt(割り込み処理の関数名)の

宣言で、割り込み処理を 登録したつもりでしたが

動きませんでした。

#pragma interrupt() の 宣言箇所を示します。

#pragma interrupt(Int_CMT0_CMI0)

void Int_CMT0_CMIO(void)

{

　　割り込み処理内で行う処理を記述する

}

インターネットで 別の資料を見つけて読んでみる

と　プロジェクト生成時 自動的に生成される

intprg.c というＣソースファイル？が、あり

CMT0の割込み機能を使う場合は intprg.c 内の
// CMTU0_CMT0

void Excep_CMTU0_CMT0(void){ }

の２行を見つけ { }内に 関数呼び出しと同様に

割り込み処理関数を入れるとの事でした。
// CMTU0_CMT0

void Excep_CMTU0_CMT0(void){ Int_CMT0_CMIO(); }

これを行う事によりちょっと進展しました。

一回だけ、割り込みが走るのを 確認しました。

一応、どのようにして割り込み処理が、走らない

事を確認したかというと、テストプログラムにて

メイン関数のループ内にて、赤のLEDを 点滅させ

ます。　割り込み処理内にて、緑のLEDを 割り込

み処理に入った時で 点灯、割り込み処理から抜け

る直前で 消灯していました。　

オシロで 赤LEDの信号を ch.1 上側、

緑LEDの信号を ch.2 下側で観測してました。

メインループ内
赤LED点滅の

信号

割り込み処理内
緑LED点滅の
信号（出ない）

一回だけ、割り込みが走るのを 確認しました。

とは、どういう事かというと、これもオシロで

確認しました。

メインループ内
赤LED点滅の

信号

割り込み処理内
緑LED点滅の

信号（１回だけ）

初回、一回だけ、割り込み処理が走ってます。

その直後、メインループの点滅処理が止まって

ます。　これは、割り込み処理を抜けた時点で

ＣＰＵが、暴走した。 という症状です。

コーディングで一つ気になる箇所がありました。

intprg.c内の void Excep_CMTU0_CMT0(void){ }

関数は、これこそが 割り込み処理のエントリ関数

で、この中で呼び出す関数は、通常の Ｃ関数で

なければならないのではと、考えました。

であれば、#pragma interrupt(Int_CMT0_CMI0)

は、必要無い。というか、むしろ 害があります。

試しに #pragma interrupt(Int_CMT0_CMI0)を

コメント化してビルド、実行しました。動き出し

ました。

メインループ内
赤LED点滅の
信号（連続）

割り込み処理内
緑LED点滅の

信号（連続で出た）

同期が取れず流れた波形はご容赦下さい

では、割り込み処理エントリ関数と、通常のＣ関数

は、何が違うのでしょうか。？

　これは、メイン関数の中で、サブ関数を呼び出すと

き CPUの命令レベルで何を 行っているかですが

分岐命令というのがあって、BRA ブランチ命令と

BSR ブランチサブルーチン命令があります。

　まず、この ２つの命令の違いを理解する必要が

あります。　ブランチ命令は、別の所に飛ぶ事はでき

ますが、戻る事が出来ません。　ブランチサブルーチ

ン命令は、用が済んだら　呼び出した箇所の次の命

令位置に戻る事が出来ます。　この戻る事を実現す

るため、戻り番地の値を スタックエリアに 積み上げ

てから、ブランチするのが、ブランチサブルーチン命

令です。　スタックエリアの何番地に積み上げたかを

管理しているのが、スタックポインタです。

サブルーチン側の最後に リターン命令があります。

リターン命令は、スタックに積み上げた戻り番地を降

ろし、PCに設定します。 これにより呼び出し側の次

の命令を読み出し実行します。

メモリ

BSR 200h100h

次の命令103h

サブルーチ
ン処理

200h

リターン命令220h

スタック

エリア

103h

BSR 200h　① 次の命令の番地
(103h)をスタックに積み上げる。
② 200hから始まるサブルーチン
に 飛ぶ。

1

２

リターン命令に来たら、スタックに
積み上げた 戻り番地(103h)を
スタックから降ろし、③ PC（ プロ
グラムカウンタ ）に、設定する。
PC　=　103h に　なっているので
次の命令を取り込もうとすると④
103Hの命令を取り込む事になる

３

４

では、割り込み処理エントリ関数と、通常のＣ関数

は、何が違うのでしょうか。？　の答えが まだ出てな

いですよね。　実は、先ほどのページの説明で サブ

ルーチンの 最後には リターン命令がありましたが

このリターン命令が、複数あるのです。

　通常のC関数のリターン命令は RTS リターン　フロ

ム　サブルーチンです。　で、割り込み処理エントリ関

数の最後にあるリターン命令は、RTE リターン フロ

ム イグゼプション なのです。　

RTS命令は、戻り番地として 4byte スタックから値を

降ろします。　それを、PCに設定します。

RTE命令は、まず 戻り番地として 4byte　スタックか

ら値を降ろします。 次に スタックから PSWの保存値

として 値を降ろします。　計 8byte スタックから降ろし

ます。

 　ここで、また intprg.c 内の
void Excep_CMTU0_CMT0(void){ Int_CMT0_CMIO(); }

の　記述ですが、Excep_CMTU0_CMT0() は 割り込み処理

関数で　最後の命令は RTE のはずです。

Excep_CMTU0_CMT0() 関数内で 呼び出している

Int_CMT0_CMI0() 関数は 通常の関数のはずです。

それを、#pragma interrupt(Int_CMT0_CMI0)で、

割り込み処理関数として宣言していると 最後の

リターン命令が RTE になるので、スタック上の デー

タを 4byte余分に 降ろしてしまうため、呼び出した

Excep_CMTU0_CMT0() の 戻りアドレスが　スタックか

ら消滅しているので、ＣＰＵが、暴走する訳です。

実際に、#pragma interrupt を 関数に付けた場合と

付けない場合とで、Ｃコンパイラで リスティングファイ

ルを出力して、内容を確認したら、やはり　#pragma

interrupt を 付けた場合が、最後のリターン命令が

RTE で、#pragma interrupt を 付けない場合の

リターン命令が　RTS である事を 確認しました。

リスティングファイルは、通常 出ないので、Ｈｅｗの

メインメニューの ビルド - RX Standard tool chainの

コンパイラ タブの カテゴリ：リスト で リスト出力で

チェックを入れて下さい。

 ; 54 //**
 ; 55 //** ★　CMT0 定周期タイマー割り込処理 **
 ; 56 //**
 ; 57 //#pragma interrupt(Int_CMT0_CMIO)
 ; 58
 ; 59 voidInt_CMT0_CMIO(void)
 .glb _Int_CMT0_CMIO
 ; 60 {
 ; 61 int t;
 ; 62
 ; 63 PORTH.PODR.BIT.B1 = 1; // 緑 点灯
00000056 FB4E11C008 MOV.L #0008C011H,R4
0000005B F14120 BSET #01H,20H[R4]
 ; 64 for(t=0; t<2000; t++);
0000005E FB5AD007 MOV.L #000007D0H,R5
00000062 L12:
00000062 6015 SUB #01H,R5
00000064 21rr BNE L12
00000066 L13:
 ; 65 PORTH.PODR.BIT.B1 = 0; // 緑 消灯
00000066 F14920 BCLR #01H,20H[R4]
00000069 02 RTS
 ; 66 }

　#pragma interrupt
をコメント化してコンパイル
したリストファイルです。
茶色の文字列は、元のＣソース
です。　RTSは　サブルーチン
からの復帰時のに使用するリ
ターン命令で、PC(プログラム
カウンタ)だけを 復帰します。

 ; 54 //**
 ; 55 //** ★　CMT0 定周期タイマー割り込み処理 **
 ; 56 //**
 ; 57 #pragma interrupt(Int_CMT0_CMIO)
 ; 59 voidInt_CMT0_CMIO(void)
 .glb _Int_CMT0_CMIO
 .STACK _Int_CMT0_CMIO=16
00000056 6E45 PUSHM R4-R5
00000058 L11:
 ; 60 {
 ; 61 int t;
 ; 62
 ; 63 PORTH.PODR.BIT.B1 = 1; // 緑 点灯
00000058 FB4E11C008 MOV.L #0008C011H,R4
0000005D F14120 BSET #01H,20H[R4]
 ; 64 for(t=0; t<2000; t++);
00000060 FB5AD007 MOV.L #000007D0H,R5
00000064 L12:
00000064 6015 SUB #01H,R5
00000066 21rr BNE L12
00000068 L13:
 ; 65 PORTH.PODR.BIT.B1 = 0; // 緑 消灯
00000068 F14920 BCLR #01H,20H[R4]
0000006B 6F45 POPM R4-R5
0000006D 7F95 RTE
 ; 66 }

 #Pragma interrupt
を有効化してコンパイル
したリストファイルです。
茶色の文字列は、元のＣソース
です。

　#pragma interruptを指定し
た事で、最後のリターン命令は
RTE が 生成されています。　
 RTE は、割り込み処理からの
復帰時に 使用するリターン命
令で、PCと PSWの２つを 復帰
します。

この関数は 内部で使用されて
いる R4 と R5 レジスタを
入口側で PUSHM R4-R5で、
スタックに退避して、出口側
で、POPM R4-R5 で 復帰さ
せています。

よって、この関数は 必要最低
限のレジスタしか、退避、復
帰して無いので、割り込み処
理に使用すれば応答は速いと
思います。

 ; 63 // CMTU0_CMT0
 ; 64 void Excep_CMTU0_CMT0(void){ Int_CMT0_CMIO(); }
 .glb _Excep_CMTU0_CMT0
00000016 _Excep_CMTU0_CMT0: ; function: Excep_CMTU0_CMT0
 .STACK _Excep_CMTU0_CMT0=36
 .RVECTOR 28,_Excep_CMTU0_CMT0
00000016 6E15 PUSHM R1-R5 // R1～R15 レジスタまで 使用可能な
00000018 6EEF PUSHM R14-R15 // レジスタ全てを退避してます。
0000001A L20:
0000001A 05rrrrrr A BSR _Int_CMT0_CMIO // 普通のサブルーチン

 // 呼び出しです

0000001E 6FEF POPM R14-R15 // スタックに積み上げた R1～R15までの
00000020 6F15 POPM R1-R5 // 全レジスタを 復帰してます。
00000022 7F95 RTE // 割り込み処理のリターン命令です

intprog.c の
リストファイルの一部です

　タイマーCMT0 の割り込み処理登録 関数部分です。
関数内入口側で、15本の 32bit レジスタ値を スタックに積み上
げ 退避しています。 関数内出口側で、退避していた 15本の
32bitレジスタ値を スタックから 降ろして、レジスタ値を元に
戻しています。 無難では、ありますが レジスタ退避、復帰の
処理に、時間的オーバーヘッドは、やや あるでしょうね。

　それと 最初参考にしたソースに 初期化時に CPU

の I フラグを 割り込み許可状態にする命令が、無い

事を書きました。　 その後調べてみると　main()関数

が、呼び出された時点で既に　I　フラグ = 1 で　割り

込みが 受付可能になっていました。

　何で こうなっているの。？　初心者にとって割り込

み許可フラグ I を 有効にする方法は厄介で悩むの

では、と考え 最初から 割り込み許可状態で、main()

関数を呼ぶようにしたのでしょうか。？

　単純に考えると便利にも思えますが、処理内容に

よっては、割り込み処理に入って欲しくないタイミング

が、一時的に発生する場合があります。

クリティカルパスと呼びます。　通常 この　クリティカ

ルパスのタイミングに入る前に 割り込み禁止の手続

きをして、クリティカルパスのタイミングを 抜け出した

ら、また割り込み許可の手続きを行う処理をします。

　よって、CPUの I フラグを 操作して 割り込み禁止、

割り込み許可を 行う事が出来る関数が、必要になり

ます。

　マイコンにとって、割り込み処理は 重要な機能と

考えますので、今回 ページを割いて説明しました。

　レジスタの退避、復帰で、やや時間的オーバー

ヘッドは　ありますが、　割り込み処理の登録方法

は、今後 当面は intprg.c を 使う方法で行う事に

します。　 　今回調べた事で、

RXシリーズ　コンパイラの 割り込みに関わる舞台裏

が、多少見えて来た感じがします。

後は、今回作成した RX22_iocs_init.c と

RX22_iocs_ivl_timer.c に関して概要を 説明します。

今回作成した IOCS 関数に関して

　まず、RX22_iocs_init.c ですが、RX220マイコンは、

起動直後は、遅いLOCO 125KHzを CPUクロックとし

て動作してます。　これを高速のクロックに切り替え

る機能として、

①　_UBYTE setup_main_clk_20m(void);

// メインクロック 20MHz 切り替え

外部水晶発振子 20MHz で動作します。

発振周波数精度は 高いです。

② _UBYTE　setup_hoco_clk_32m(void);

// HOCOクロック 32MHz 切り替え

CPU内部の HOCO発振器（多分 RC OSC）で

発振周波数精度は 32MHz ±1% です。

①より ②の方が クロック周波数換算で 1.6倍 早い

です。　でも、時間精度を要求する用途では、水晶発

振器の ①の方が有利です。

　で、CPUクロックの周波数が、早い遅いは、単純に

処理速度だけの問題ではなくて、例えば今回作成し

たインターバルタイマーの周期や、シリアル通信の

ボーレイト等に影響します。　で、クロック周波数の

切り替えが、周辺回路に影響を及ぼさないように

する必要があります。　RX22_iocs_init.c 内に

_UBYTE　chk_cpu_clock(void);

// クロック設定周波数 確認用

を、用意してます。　

20MHzの場合は　関数値 = 20 で、

32MHzの場合は、関数値 = 32 です。

この関数を、各周辺回路の 初期化関数で、読み込

み クロックの分周値を 調整します。

　これにより、20MHzでも、32MHzでも インターバルタ

イマーの 時間分解能は、1ms に　出来ます。

　まだ作ってませんが、シリアル通信のボーレイトも、

同様に クロック周波数に影響を受けないようにする

予定です。

 HOCO 32MHz 使用時
 割り込み処理時間：Max 1.15us
 タイマー割り込み
　　　　　　周期： 1.004ms
　　　　　周波数： 996Hz

 水晶発振子 20MHz 使用時
 割り込み処理時間：Max 1.8us
 タイマー割り込み
　　　　　　周期： 1.000 ms
　　　　　周波数： 1.000 KHz

　あと、RX22_iocs_init.c には、細かい処理の関数

をいくつか作ってます。　CPUの割り込み フラグ I を

セットしたり、リセットする関数。

void　　enable_irq(void);

void　　disable_irq(void);

ウォッチドックタイマー機能：

これは、setup_wdt()で起動して、その後 0.8秒以内に

refresh_wdt() を 継続的に呼び出し続けないと、

CPUリセットが、かかる機能です。　

機器の信頼性を、高める用途で使用します。

void　　setup_wdt(void);

void　　refresh_wdt(void);

ソフトによる CPUリセットを 行う機能です。

void　　soft_cpu_reset(void);

メモリブロックを 00h で 埋め尽くす機能です。

cntは、バイト単位の メモリサイズ指定です。

void　　nulls(_UBYTE *ptr, int　cnt);

RX22_iocs_ivl_timer.c 内の関数：

1ms単位　インターバルタイマー起動

void setup_interval_timer(void);

1msフリーランタイマの読み出し

_UINTget_free_ctr(void);

1ms単位減算タイマー１ 初期値 設定

void set_timer_1m1(_UWORD cnt);

1ms単位減算タイマー１ 現在の 残り時間 読み出し

_UWORD get_timer_1m1(void);

同様の仕様で、1ms単位減算タイマー２と

分解能を10ms にした、10ms単位減算タイマー１と

２が あります。　

減算し続けて 0 になったら、減算は停止します。

　多少確認処理が遅れても 減算タイマー値が 0 に

なった事を確認し損なう心配はありません。

インターバルタイマ機能を使った簡易テスト (1/2)

//************************
//** 初期化処理 **
//************************
void init_proc(void)
{
// CPU クロック初期化
// --

setup_main_clk_20m(); // メインクロック 20MHz 切り替え
// setup_hoco_clk_32m(); // HOCOクロック 32MHz 切り替え

// I/Oポート 初期化
// --

PORTH.PODR.BYTE = 0x00; // ポートH 出力データ初期値 = 0
PORTH.PDR.BYTE = 0xFF; // ポートH 各ビットの入出力指定(1=出力)
setup_interval_timer(); // インターバルタイマー起動

// disable_irq(); // CPU I Flag 割り込みを禁止する
// enable_irq(); // CPU I Flag 割り込みを許可する
}

①　CPUクロックは、20MHzを選択。

②　秋月電子RX220ベース基板の赤と緑
　　　のLEDを点灯出来るように ポートH
　　　を 初期化する。

③　インターバルタイマーの起動

１

２

３

インターバルタイマ機能を使った簡易テスト (2/2)

void main(void)
{
 init_proc(); // 総合 初期化処理
 set_timer_1m1(100); // タイマー1m1／初期値=100 設定
 set_timer_1m2(99); // タイマー1m2／初期値= 99 設定
 while(1)
 {

if(get_timer_1m1() == 0) // タイマー1m1が 0 になったら
{
 set_timer_1m1(100); // タイマー1m1／初期値=100 再設定
 if(PORTH.PODR.BIT.B0 == 0) // 赤LEDポートは 0 か？

PORTH.PODR.BIT.B0 =1; // 赤LED = 1
 else

PORTH.PODR.BIT.B0 =0; // 赤LED = 0
}
if(get_timer_1m2() == 0) // タイマー1m2が 0 になったら
{
 set_timer_1m2(99); // タイマー1m2／初期値= 99 再設定
 if(PORTH.PODR.BIT.B1 == 0) // 緑LEDポートは 0 か？

PORTH.PODR.BIT.B1 =1; // 緑LED = 1
 else

PORTH.PODR.BIT.B1 =0; // 緑LED = 0
}

 }
}

この、テストプログラムでは、
タイマー1m1の周期を 100ms に設定し
タイマー1m2の周期を 99ms に設定して
います。　これにより
赤LEDは 点灯(100ms)->消灯（100ms）を
繰り返します。
緑LEDは 点灯(99ms)->消灯（99ms）を
繰り返します。
赤LEDに 比べ緑LEDは、僅かに周期が
短いため、オシロで観測すると 赤LED信
号に比べ、緑LED信号の位相が、進み続
けます。

