
シリアル通信、調歩同期とは

　コンピュータ世界の通信とは、コンピュータ同
士、あるいは、コンピュータと いろんな周辺機
器を接続してデータ通信を行わせる事です。　
　接続の形態で、シリアル通信とパラレル通信
があります。
　　シリアル通信とは、ビットシリアルといって　１
つの伝送路に、データを　1ビットずつ載せて順
次一定速度で 伝送するやりかたです。 通常、
送信線と、受信線の ２つの伝送路を組みにし
て扱う場合が多いです。　電線が少なくて済む
ため遠距離に伝送する場合にも 使われます。

　パラレル通信は、８ビット分のデータ線、８本
を持っており、一度に並列８ビット（１バイト）単
位でデータを 転送出来ます。　比較的近距離
で、データを高速に転送する用途で使用されて
いました。 　パラレル通信は　まだありますが、
最近 あまり見なくなってきました。

SD

RD

RD

SD

コンピュータ
B

コンピュータ
A

シリアル通信

b0 b1 b2 b3 b4 b5 b6 b7St Sp

　シリアル通信とは、１本の信号線に、時分割で
1bit単位のデータを載せて転送するやり方です。
　上の例では、調歩同期のビット並び例を示して
います、調歩同期では、送り側と 受け側で　同じ
転送速度で、データを 送受信します。　調歩同
期では、1byteのデータの 始まりが分かるように
先頭に St スタートビットが、付きます。　同様に
１byteのデータの終りに Sp ストップビットが付き
ます。 あいだの 8bitデータは、b0から順次送信
されます。　この方式のメリットは、I2Cや SPIの
ような シリアルクロック線が、必要ない事です。

Time

SD

RD RD

SD

コンピュータ
B

コンピュータ
A

シリアル通信

b0 b1 b2 b3 b4 b5 b6 b7St Sp

　上記の図で、２台のコンピュータAと Bの 間の
２本の矢印の付いた線ですが、矢印の向きは
データ転送される方向を示します。　線の両端に
は、SD、RDの名前を付けてますが、　センドデー
タ 送信線、レシーブデータ 受信線の意味です。

　この際、注意する必要があるのは、自分の
SD信号は、相手の RD信号になるという事です。
相手の SD信号は、自分の RD信号になります。
　この関係を明確化するため、この図では、矢印
の信号線を、クロスした形で描きました。

Time

　シリアル通信で、調歩同期の場合、伝送速度
ボーレイトの設定が、決められています。
110bps、150bps、300bps、600bps、1200bps、
2400bps、4800bps、9600bps、14400bps、
19200bps、38400bps、57600bps、115200bps、
230400bps、460800bps、921600bps これらは
テラタームの設定値を参照しました。

　RX220では、ボーレイトの分周値の問題で
安定して使えるのは 57600bpsまでと思います。
HOCO 32MHzの高速クロックの場合 115200bps
が 何とか使えました。 クロック分周比の誤差が
-3.99%に なっているので 1%しか余裕が無い上
に、HOCOクロックの 誤差が 1%以内のようで
際どい誤差で動いている事が考えられます。
使用する環境によっては、115200bpsは、動作が
不安定になる恐れがあります。
　設定するボーレイトと、誤差を計算した Excelの
表を、次のページに示します。

外部水晶 20MHzメインクロック
使用の ボーレイト換算表

　RX220の SCI1の ボーレイトに関わる設定
SCI1.BRR = BRR値(8 ～ 255)
SCI1.SNR.BIT.CKS = 0 ～ 2（ これは 0 = 1/1、
　　　　　　　　　　1 = 1/4、2 = 1/16 ）BPS が ボーレイトです。

PCLKが、SCI1に入力されるクロック周波数です。

内部HOCOクロック使用の
 ボーレイト換算表

　オシロ観測用 9bit Data長 [us]は、設定した
ボーレイトが正しいか確認するため、0x00を
データとして出力すると、スタートビットから、b7ま
での 9bitが、全て Lowレベルになるので、それを
オシロで、パルス幅を 計って調べるものです。

 オシロ観測用 9bit Data長

今回作成した シリアル通信
プログラム／ヘッダファイル

　シリアル通信に関わる、関数の一覧です。

// Source File : RX22_iocs_sci1.c プロトタイプ宣言
// ---
_UBYTE setup_sci1(_UBYTE bsel, _UBYTE pb); // SCI1 オープン処理
void send_sci1(_UBYTE c); // １文字 送信
shortget_sci1_recv_len(void); // SCI1 受信バッファ内の 格納文字列長 取得
shortrecv_sci1(void); // １文字 受信
void prin_sci1(char *txt); // Null終端の文字列を SCI1から送信
void print_sci1(char *txt); // 文字列の送信 Cr, Lf 付き
void send_block_sci1(Uchar buf[], short len); // バイナリ固定長データの送信
shortrecv_text_sci1(char txt[], short maxlen); // 文字列を受信、Crコード検出で 打ち切る
shortrecv_block_sci1(Uchar buf[], short len); // 受信した固定長バイナリデータの取り出し

//**
//** シリアル通信処理 初期化処理　　　　　　　　　　　　　　**
//** -- **
//** bsel : ボーレイト　　　　　　　　　　　　　　　　　　　**
//** 0 = 300 b/s **
//** 1 = 600 b/s **
//** 2 = 1200 b/s **
//** 3 = 2400 b/s **
//** 4 = 4800 b/s **
//** 5 = 9600 b/s **
//** 6 = 19200 b/s **
//** 7 = 31250 b/s **
//** 8 = 38400 b/s **
//** 9 = 57600 b/s **
//** 10 = 115200 b/s (32MHzの時のみ何とか使用可) **
//** (20MHzでは 115200 b/sは使えない) **
//** -- **
//** pb : パリティビット 0 = 無し 、1 = 偶数 、2 = 奇数 **
//** -- **
//** データ長： 8 bit 、ストップbit長： 1 bit 固定 **
//** -- **
//** 関数値： = 0 : 使用不能 **
//** <> 0 : 使用可能（ CPUクロック値を返す ） **
//**
_UBYTE　setup_sci1(_UBYTE bsel, _UBYTE pb)

シリアル通信処理
初期化（ SCI1 ）

初期化の設定例を
　　　　　　　　いくつか示します。

①　ボーレイト： 9600bps
　　パリティ：　無し
　 setup_sci1(5, 0);

②　ボーレイト： 38400bps
　　パリティ：　偶数
　 setup_sci1(8, 1);

③　ボーレイト： 57600bps
　　パリティ：　奇数
　 setup_sci1(9, 2);

1文字受信、1文字送信処理 //************************************
//** １文字送信 **
//** ------------------------------ **
//** c : 送信データ 0 ～ 255 **
//************************************
void send_sci1(_UBYTE c)

//************************************
//** １文字 受信 **
//** ------------------------------- **
//** 関数値： 0 ～ 255 = 正常データ **
//** -1 = 受信データ無し **
//*************************************
short recv_sci1(void)

//***
//** SCI1 受信バッファ内の 格納文字列長 取得 **
//** --- **
//** 関数値： 0 ～ 255　受信バイト数 **
//***
short get_sci1_recv_len(void)

　シリアル通信処理で、初期化以外で、
一番基本的な、１文字送信関数、１文字受信
関数 （ 正確には、受信リングバッファから１文
字取り出し ）、それと受信リングバッファに、何
バイトデータが、格納されているかの、受信バ
イト数 取り出し関数が、基本となる関数です。

　ちなみに １文字送信関数 send_sci1() は
直接 周辺回路SCI1をアクセスして送信してい
ます。

　それに対して、受信処理はいつ相手からデー
タが、送られてくるか分からないので　SCI1の
受信処理は、SCI1の割り込み機能を利用して
256バイトの リングバッファに書き込んでいま
す。　それとは非同期に recv_sci1() にて 受信
データを取り出す事が出来ます。

シンプルなデータ折り返し処理

//********************************
//** ループテスト２ **
//********************************
void test_loop_2(void)
{

short dt;

while(1)
{

dt = recv_sci1(); // １文字受信
if(dt == -1) continue;

send_sci1(dt); // １文字送信
}

}

　今回作成したプログラム内のデータ折り返し
関数から、LEDのタイマーによる点滅を外した
物です。　受信データが　-1は 受信データが
無い事を意味します。

　リングバッファは、FIFOバッファです。
一番最初に書き込んだデータが、一番最初に
取り出せます。

　実際にメモリが リング状になってる訳ではな
いですが、一番最後のアドレスまでデータを格
納したら、また先頭に戻ってデータを書き続け
るバッファです。　そんな事したら先頭のデータ
が壊れると思う方もいるかもしれませんが、書
き込みポインタを、追いかけるように読み出し
ポインタもデータを読み出すので、データを読
み出してしまったら、そのデータの格納されて
いた場所は、空きエリアとみなされるのです。
ちょっと、文字の説明だけでは難しいですね。
　次のページに図で示します。

リングバッファとは

リングバッファの動作

WP=0 RP=0

　格納データ数８個の 小さなリングバッファで
説明します。　WPは 次の書き込み位置ポイン
タで、　RPは 次の読み出し位置ポインタで、
CNTは、現状のデータ格納個数です。

① 初期化直後

CNT=0

A

B

C
WP=3

RP=0

② A,B,Cの３個
データを格納後

CNT=3

E

C

D

F
WP=6

RP=2

③ D,E,Fの３個の
データを格納し、
AとBのデータを
取り出した後

CNT=4

I

F

WP=1

RP=5

④ G,H,I の ３個の
データを格納し、
C,D,Eのデータを

取り出した後

CNT=4

G

H

I

J

K
WP=3

RP=0

⑤ J,K の ２個の
データを格納し、
F,G,Hのデータを

取り出した後

CNT=3

　リングバッファのイメージが、多少なりと理解
出来ましたでしょうか。？

リングバッファ アクセス時の注意

　今回のリングバッファ アクセスの関数は、表に出し
てませんが、書き込み wr_rbuf関数と　読み出し
rd_rbuf関数の2つが、あります。　wr_rbuf関数は、
SCI1割り込み処理内にて呼び出されます。　rd_rbuf
関数は、アイドルループ内で呼び出されます。　
rd_rbuf関数内で　disable_irq関数 割り込み禁止と、
enable_irq関数 割り込み許可を 呼び出しています。

052の動画で、チラッと話をしましたが、disable_irq関
数と enable_irq関数に挟まれている区間が、クリティ
カルパスになります。 　どういうことかというと、アイド
ルループ内で recv_sci1関数を呼び出すと、その中で
rd_rbuf関数を呼び出します。 rd_rbuf関数実行中で
Rbufに関わる読み出し　書き込みをしている最中に
wr_buf関数が、割り込んで来ると、Rbufのパラメータ
が　壊される恐れがあるのです。　割り込み処理が
割り込んで来ないように、一時的にクリティカルセク
ションの間だけ、割り込み禁止にしているという事で
す。　

void wr_rbuf(Uchar c)
{
　　if(Rbuf.ct == 255)　return; 　// 満杯であれば格納しない

　　Rbuf.rng[Rbuf.wp].dt = c;　// 1byte 受信データ格納
　　Rbuf.wp++; // 書き込みポインタ更新
 Rbuf.ct++; // 格納個数 更新
}

short rd_rbuf(void)
{
 short dt;

 if(Rbuf.ct == 0)
 return -1; // データが無ければ -1を返す

 disable_irq(); // 割り込みを 一時的に禁止する
 dt = Rbuf.rng[Rbuf.rp].dt; // 1byte 受信データ読み出し
 Rbuf.rp++; // 書き込みポインタ更新
 Rbuf.ct--; // 読み出し個数 更新
 enable_irq(); // 割り込みを許可する

return dt;
}

ややこしいので、エラーフラグ処理を外してます。

