
シリアル通信、調歩同期とは

　コンピュータ世界の通信とは、コンピュータ同
士、あるいは、コンピュータと いろんな周辺機
器を接続してデータ通信を行わせる事です。　
　接続の形態で、シリアル通信とパラレル通信
があります。
　　シリアル通信とは、ビットシリアルといって　１
つの伝送路に、データを　1ビットずつ載せて順
次一定速度で 伝送するやりかたです。  通常、
送信線と、受信線の ２つの伝送路を組みにし
て扱う場合が多いです。　電線が少なくて済む
ため遠距離に伝送する場合にも 使われます。

　パラレル通信は、８ビット分のデータ線、８本
を持っており、一度に並列８ビット（１バイト）単
位でデータを 転送出来ます。　比較的近距離
で、データを高速に転送する用途で使用されて
いました。 　パラレル通信は　まだありますが、
最近 あまり見なくなってきました。
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　シリアル通信とは、１本の信号線に、時分割で
1bit単位のデータを載せて転送するやり方です。
　上の例では、調歩同期のビット並び例を示して
います、調歩同期では、送り側と 受け側で　同じ
転送速度で、データを 送受信します。　調歩同
期では、1byteのデータの 始まりが分かるように
先頭に St スタートビットが、付きます。　同様に
１byteのデータの終りに Sp ストップビットが付き
ます。  あいだの 8bitデータは、b0から順次送信
されます。　この方式のメリットは、I2Cや SPIの
ような シリアルクロック線が、必要ない事です。
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　上記の図で、２台のコンピュータAと Bの 間の
２本の矢印の付いた線ですが、矢印の向きは
データ転送される方向を示します。　線の両端に
は、SD、RDの名前を付けてますが、　センドデー
タ 送信線、レシーブデータ 受信線の意味です。

　この際、注意する必要があるのは、自分の
SD信号は、相手の RD信号になるという事です。
相手の SD信号は、自分の RD信号になります。
　この関係を明確化するため、この図では、矢印
の信号線を、クロスした形で描きました。
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　シリアル通信で、調歩同期の場合、伝送速度
ボーレイトの設定が、決められています。
110bps、150bps、300bps、600bps、1200bps、
2400bps、4800bps、9600bps、14400bps、
19200bps、38400bps、57600bps、115200bps、
230400bps、460800bps、921600bps これらは
テラタームの設定値を参照しました。

　RX220では、ボーレイトの分周値の問題で
安定して使えるのは 57600bpsまでと思います。
HOCO 32MHzの高速クロックの場合 115200bps
が 何とか使えました。 クロック分周比の誤差が
-3.99%に なっているので 1%しか余裕が無い上
に、HOCOクロックの 誤差が 1%以内のようで
際どい誤差で動いている事が考えられます。
使用する環境によっては、115200bpsは、動作が
不安定になる恐れがあります。
　設定するボーレイトと、誤差を計算した Excelの
表を、次のページに示します。



外部水晶 20MHzメインクロック
使用の ボーレイト換算表

　RX220の SCI1の ボーレイトに関わる設定
SCI1.BRR = BRR値( 8 ～ 255 )
SCI1.SNR.BIT.CKS = 0 ～ 2（ これは 0 = 1/1、
　　　　　　　　　　1 = 1/4、2 = 1/16 ）BPS が ボーレイトです。

PCLKが、SCI1に入力されるクロック周波数です。



内部HOCOクロック使用の
 ボーレイト換算表

　オシロ観測用 9bit Data長 [us]は、設定した
ボーレイトが正しいか確認するため、0x00を
データとして出力すると、スタートビットから、b7ま
での 9bitが、全て Lowレベルになるので、それを
オシロで、パルス幅を 計って調べるものです。

 オシロ観測用 9bit Data長



今回作成した シリアル通信
プログラム／ヘッダファイル

　シリアル通信に関わる、関数の一覧です。

//  Source File : RX22_iocs_sci1.c  プロトタイプ宣言
// -----------------------------------------------------------------------
_UBYTE setup_sci1( _UBYTE bsel, _UBYTE pb );    // SCI1 オープン処理
void send_sci1( _UBYTE c );                    // １文字 送信
shortget_sci1_recv_len( void );               // SCI1 受信バッファ内の 格納文字列長 取得
shortrecv_sci1( void );                        // １文字 受信
void prin_sci1( char *txt );                  // Null終端の文字列を SCI1から送信
void print_sci1( char *txt );                 // 文字列の送信 Cr, Lf 付き
void send_block_sci1( Uchar buf[], short len );  // バイナリ固定長データの送信
shortrecv_text_sci1( char txt[], short maxlen ); // 文字列を受信、Crコード検出で 打ち切る
shortrecv_block_sci1( Uchar buf[], short len );  // 受信した固定長バイナリデータの取り出し



//************************************************************
//**  シリアル通信処理 初期化処理　　　　　　　　　　　　　　**
//** ------------------------------------------------------ **
//**  bsel : ボーレイト　　　　　　　　　　　　　　　　　　　**
//**   0 =    300 b/s                                        **
//**   1 =    600 b/s                                        **
//**   2 =   1200 b/s                                        **
//**   3 =   2400 b/s                                        **
//**   4 =   4800 b/s                                        **
//**   5 =   9600 b/s                                        **
//**   6 =  19200 b/s                                        **
//**   7 =  31250 b/s                                        **
//**   8 =  38400 b/s                                        **
//**   9 =  57600 b/s                                        **
//**  10 = 115200 b/s ( 32MHzの時のみ何とか使用可 )          **
//**     ( 20MHzでは 115200 b/sは使えない )     **
//** ------------------------------------------------------ **
//**  pb : パリティビット 0 = 無し 、1 = 偶数 、2 = 奇数 **
//** ------------------------------------------------------ **
//**  データ長： 8 bit 、ストップbit長： 1 bit   固定       **
//** ------------------------------------------------------ **
//**  関数値： = 0 :  使用不能                              **
//**   <> 0 :  使用可能（ CPUクロック値を返す ）           **
//************************************************************
_UBYTE　setup_sci1( _UBYTE bsel, _UBYTE pb )

シリアル通信処理
初期化（ SCI1 ）

初期化の設定例を
　　　　　　　　いくつか示します。

①　ボーレイト： 9600bps
　　パリティ：　無し
　 setup_sci1( 5, 0 );

②　ボーレイト： 38400bps
　　パリティ：　偶数
　 setup_sci1( 8, 1 );

③　ボーレイト： 57600bps
　　パリティ：　奇数
　 setup_sci1( 9, 2 );



1文字受信、1文字送信処理 //************************************
//**  １文字送信 **
//** ------------------------------ **
//**  c :  送信データ 0 ～ 255 **
//************************************
void send_sci1( _UBYTE c )

//************************************
//**  １文字 受信  **
//** ------------------------------- **
//**  関数値： 0 ～ 255 = 正常データ **
//**           -1 = 受信データ無し   **
//*************************************
short recv_sci1( void )

//***********************************************
//**  SCI1 受信バッファ内の 格納文字列長 取得 **
//** ----------------------------------------- **
//**  関数値： 0 ～ 255　受信バイト数 **
//***********************************************
short get_sci1_recv_len( void )

　シリアル通信処理で、初期化以外で、
一番基本的な、１文字送信関数、１文字受信
関数 （ 正確には、受信リングバッファから１文
字取り出し ）、それと受信リングバッファに、何
バイトデータが、格納されているかの、受信バ
イト数 取り出し関数が、基本となる関数です。

　ちなみに １文字送信関数 send_sci1() は
直接 周辺回路SCI1をアクセスして送信してい
ます。

　それに対して、受信処理はいつ相手からデー
タが、送られてくるか分からないので　SCI1の
受信処理は、SCI1の割り込み機能を利用して
256バイトの リングバッファに書き込んでいま
す。　それとは非同期に recv_sci1() にて 受信
データを取り出す事が出来ます。



シンプルなデータ折り返し処理

//********************************
//**  ループテスト２   **
//********************************
void  test_loop_2( void )
{

short dt;

while( 1 )
{

dt = recv_sci1();     // １文字受信
if( dt == -1 ) continue;

send_sci1( dt );      // １文字送信
}

}

　今回作成したプログラム内のデータ折り返し
関数から、LEDのタイマーによる点滅を外した
物です。　受信データが　-1は 受信データが
無い事を意味します。

　リングバッファは、FIFOバッファです。
一番最初に書き込んだデータが、一番最初に
取り出せます。

　実際にメモリが リング状になってる訳ではな
いですが、一番最後のアドレスまでデータを格
納したら、また先頭に戻ってデータを書き続け
るバッファです。　そんな事したら先頭のデータ
が壊れると思う方もいるかもしれませんが、書
き込みポインタを、追いかけるように読み出し
ポインタもデータを読み出すので、データを読
み出してしまったら、そのデータの格納されて
いた場所は、空きエリアとみなされるのです。
ちょっと、文字の説明だけでは難しいですね。
　次のページに図で示します。

リングバッファとは



リングバッファの動作

WP=0 RP=0

　格納データ数８個の 小さなリングバッファで
説明します。　WPは 次の書き込み位置ポイン
タで、　RPは 次の読み出し位置ポインタで、
CNTは、現状のデータ格納個数です。
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　リングバッファのイメージが、多少なりと理解
出来ましたでしょうか。？



リングバッファ アクセス時の注意

　今回のリングバッファ アクセスの関数は、表に出し
てませんが、書き込み wr_rbuf関数と　読み出し
rd_rbuf関数の2つが、あります。　wr_rbuf関数は、
SCI1割り込み処理内にて呼び出されます。　rd_rbuf
関数は、アイドルループ内で呼び出されます。　
rd_rbuf関数内で　disable_irq関数 割り込み禁止と、
enable_irq関数 割り込み許可を 呼び出しています。

052の動画で、チラッと話をしましたが、disable_irq関
数と enable_irq関数に挟まれている区間が、クリティ
カルパスになります。 　どういうことかというと、アイド
ルループ内で recv_sci1関数を呼び出すと、その中で
rd_rbuf関数を呼び出します。 rd_rbuf関数実行中で
Rbufに関わる読み出し　書き込みをしている最中に
wr_buf関数が、割り込んで来ると、Rbufのパラメータ
が　壊される恐れがあるのです。　割り込み処理が
割り込んで来ないように、一時的にクリティカルセク
ションの間だけ、割り込み禁止にしているという事で
す。　

void wr_rbuf( Uchar c )
{
　　if( Rbuf.ct == 255 )　return; 　// 満杯であれば格納しない

　　Rbuf.rng[Rbuf.wp].dt = c;　// 1byte 受信データ格納
　　Rbuf.wp++;                  // 書き込みポインタ更新
    Rbuf.ct++;                  // 格納個数 更新
}

short rd_rbuf( void )
{
    short   dt;

    if( Rbuf.ct == 0 )
       return  -1;  // データが無ければ -1を返す

    disable_irq(); // 割り込みを 一時的に禁止する
    dt = Rbuf.rng[Rbuf.rp].dt;  // 1byte 受信データ読み出し
    Rbuf.rp++;       // 書き込みポインタ更新
    Rbuf.ct--;       // 読み出し個数 更新
    enable_irq();   //  割り込みを許可する

return dt;
}

ややこしいので、エラーフラグ処理を外してます。


