
100

テスト用　手動アナログ信号発生器

5V

0V

0
.
1

3
3

AVCC

電源 引き回し

　今回は、最初に手動アナログ信号発生器を、用意する事にしました。
通常のファンクションジェネレータとは、異なる形で　ボリュームを回す事
でテスト信号を発生させようと考えました。　で、１チャネルだけの出力だ
けでは　複数入力のA/D入力において単調になるので　電源 5Vで、中
点の 2.5Vを、中心に極性を入れ替えた逆相信号も　用意する事にしま
した。
①　正相出力が、5Vのとき、逆相出力は 0V
②　正相出力が、0Vのとき、逆相出力は 5V
③　正相出力が、2.5Vのとき、逆相出力も 2.5V　に、なります。
使用する部品の関係で　精度は いまいちです。

AVCC

V
R

1
K

(B
)

0
.
1

ー

＋

AVCC

0
.
1

56K

1
0
0
K

7

86

5
4

IC1A ー

＋

1
K

1

2

3 IC1B

56K

1
K

AVCC

0
.
1

100

100

手動テスト信号（ 正相 ）

手動テスト信号（ 逆相 ）

手動テスト信号 生成回路

ボリウム

今回の信号発生器

信号発生器の中身

RX220 A/D変換処理ソフト作成

　RX220の　12bit A/Dコンバーターは、以下の　３つ
の動作モードを持っています。　
[1]　シングルスキャンモード
[2]　連続スキャンモード
[3]　グループスキャンモード

　シングルスキャンモードは、一番シンプルで、A/Dス
タートを行うと １回 A/D入力のスキャンを行います。
今回は、シングルスキャンモードを使用します。
　RX220に おいては　１回のA/D変換ではなく、1回
のA/Dスキャンというような表現をしてあります。
　私は、最初　単純に 1チャネル１回のA/D変換をす
るのは、どうアクセスするのかと思っていたので、そ
こに考え方の違いがあったようです。　
　どういう事かというと、今まで私は、1回のA/D変換
において、① 入力チャネルの選択、② A/D変換ス
タート、③ A/D変換終了確認、④ A/D変換後の量子
化データ取り出し　というシーケンスをイメージしてい
たのです。　つまり、１チャネル毎にソフトで、上記
①～④のアクセスを行うと思っていたのです。

　ところが、RXシリーズでは、A/Dコンバータ周辺回路
が進化しており、例えば、AN000～AN003の４チャネルを
サンプリングする場合は、 ADANSA レジスタに 0x000F
を 設定すれば、ハード側で、４チャネル連続で A/D変
換処理を行います。 そしてADCSRレジスタのADSTビット
に 1 を 書き込む事で、A/D変換が開始します。　
ADCSR.ADSTビットが 1の時は A/D変換中です。
ADCSR.ADSTビットが、0 になったら、４チャネル全てが
A/D変換終了してます。
　ちなみに　AN000単独で A/D変換を行う場合は、
ADANSAレジスタに 0x0001 を設定します。
要は、ADANSAレジスタの b0 が AN000 に対応、 b1 が
AN001 に対応、b2 が AN002 に対応、b3 が AN003 に
対応しています。　b15まで同様に対応しています。
よって、AN000～AN003の４チャネルの場合、ADANSA
レジスタに 0x000Fを設定する事になります。
　A/Dコンバータは、1つですが 変換データを書き込む
レジスタはチャネル毎に独立して対応し 16個分かれて
います。　よって、複数チャネルA/Dスキャンして も、
データを　上書きして消失する心配は ないです。

A/Dコンバータ アクセス処理ソース

void init_adc(void); // 12bit A/Dコンバータ初期化 処理 4ch シングルスキャンモード
void start_adc(void); // A/Dコンバータ シングルスキャン スタート
void get_ad_scan(short ad[]); // A/D変換データ 4ch分 取り出し

（ init_adc関数は、ちょっと長いの で次のページに示します。）

void start_adc(void)
{
 S12AD.ADCSR.BIT.ADST = 0x1; // AD変換スタート
}

void get_ad_scan(short ad[])
{

while(S12AD.ADCSR.BIT.ADST != 0); // A/D変換終了まで 待ち

ad[0] = S12AD.ADDR0; // A/D変換データ ch.0 取り出し　
ad[1] = S12AD.ADDR1; // A/D変換データ ch.1 取り出し　
ad[2] = S12AD.ADDR2; // A/D変換データ ch.2 取り出し　
ad[3] = S12AD.ADDR3; // A/D変換データ ch.3 取り出し　

}

#define ADC_STATE 20 // A/D変換時間の単位

void init_adc(void)
{
 // Port設定
 PORT4.PMR.BYTE = 0x0F; // Port40～43を周辺機能とする
 PORT4.PDR.BYTE = 0x00; // 入力端子

 // S12ADモジュールを 有効化
 SYSTEM.PRCR.WORD = 0xA503; // クロックソース選択の保護解除
 MSTP(S12AD) = 0; // S12ADを有効化
 SYSTEM.PRCR.WORD = 0xA500; // クロックソース選択の保護

// A/D 変換設定
 S12AD.ADCSR.BIT.ADCS = 0; // シングルスキャンモード
 S12AD.ADANSA.WORD = 0x000F; // AN000～AN003 を 有効にする

 S12AD.ADSSTR0 = ADC_STATE; // AN000 : 20 ステート（ 暫定値 ）
 S12AD.ADSSTR1 = ADC_STATE; // AN001 : 20 ステート（ 暫定値 ）
 S12AD.ADSSTR2 = ADC_STATE; // AN002 : 20 ステート（ 暫定値 ）
 S12AD.ADSSTR3 = ADC_STATE; // AN003 : 20 ステート（ 暫定値 ）
}

A/Dアクセス処理、呼び出し側

void main(void)
{

short ad[4];

init_proc(); // 初期化処理 init_proc関数の内容は次のページに示します。
while(1)
{

set_timer_1m1(50); // 50ms時間待ち
while(get_timer_1m1() > 0);

PORTH.PODR.BIT.B0 = 1; // LED 点灯
start_adc(); // A/Dコンバータ シングルスキャン スタート
get_ad_scan(ad); // A/D変換データ 4ch分 取り出し
send_addat(ad, 1); // A/Dデータ 送信
PORTH.PODR.BIT.B0 = 0; // LED 消灯

 }
}

// 通信に関わるややこしい部分は、取り外しました。

void init_proc() // 全体の 初期化処理
{

disable_irq(); // CPU I Flag = 0 割り込みを禁止する

// CPU クロック初期化
// ---

setup_main_clk_20m(); // メインクロック 20MHz 切り替え
// setup_hoco_clk_32m(); // HOCOクロック 32MHz 切り替え

// I/Oポート 初期化
// ---

PORTH.PODR.BYTE = 0x00; // ポートH 出力データ初期値 = 0
PORTH.PDR.BYTE = 0xFF; // ポートH 各ビットの入出力指定(1=出力)

setup_interval_timer(); // インターバルタイマー起動
setup_sci1(9, 0); // SCI1 オープン処理（ 57600 b/s ）
init_adc(); // 12bit A/Dコンバータ初期化 処理

enable_irq(); // CPU I Flag = 1 割り込みを許可する
}

