
RX220 RSPIを使った SPIデバイスアクセス

　RX220マイコンの 周辺回路 RSPIを使用し

て、SPIの デバイスをアクセスするソフトを

作成します。

　今まで、RX220で、周辺回路 CMT0 を 使い　

インターバルタイマ機能を作成したり、SCI1を

使って 調歩同期のシリアル通信機能を 作成し

たり、S12ADを 使い 12bit A/D入力の　ソフト

を作成してきました。　そして今回 RSPI0 を

使って　SPI周辺デバイスを アクセスするソフト

を作成した訳ですが、今回の RSPI0 が、ソフト

開発で、一番手間のかかる開発作業でした。

　メーカーのデータシートに　初期化のフロー

チャートが、載っているのですが、省略されて

いる部分が 結構あり、分かりにくいのです。

　MPCや、PORTn．PMR設定や、IEN 割り込み

コントローラの設定の確認で、1200ページほど

ある、データシートのそれぞれの周辺回路の説

明を書いてあるページに飛んで確認する必要

があります。　そして作成した初期化、１byte転

送処理は、全く動作しませんでした。　で、動く

サンプルソースが、ないかと探して 書籍の

RX600シリーズの RSPIのソースが あったので

入力して、その後　RX600シリーズと RX220は

多少周辺回路が異なるので、コンパイルエラー

を取り除き、やってみると動かない。　で、下手

な鉄砲も数打ちゃ当たるで、色々試行錯誤し

て、やっと動き出しました。 　今回は、必要 最

低限の 機能だけ実現しました。

　RSPIの機能は、かなり高機能で、柔軟性が

あるので SPI以外でも使えそうな気がします。

但し、高機能ゆえに理解するのが難しいです。

　

　

　右のオシログラフは、上側の信号が SCK

下側の信号が、MOSI マスター出力データで

す。

　データは、１バイト分のデータ転送時の波形

です。　データは、0xAA を転送してます。

　データは、正論理で　左から MSB b7 です。

このデータは、マスタが送信していますので

スレーブ側では、上側の SCKの 立ち上がり

エッジで、 下側の MOSI信号の 取り込みを

行う事になってます。

　そして、SCK信号の　立ち下がりエッジで

データの信号を、次の信号に入れ替えて

います。　

b0のデータ信号を出した後は、しばらくの間、

b0のデータ信号レベルを 維持しているようで

す。

b7 b6 b5 b4 b3 b2 b1 b0

1 0 1 1 10 0 0

SPI信号波形の確認　１

SPI信号波形の確認　２

00h 03h 0Fh 3Fh

　右のオシログラフは、上側の信号が SCK

下側の信号が、MOSI マスター出力データで

す。　このオシログラフでは ４バイトのデータを

送信しています。　

データは、0x00、0x03、0x0F、0x3Fの 順に

送信しています。 右のグラフで、色を付けてい

る四角は、青が 0 の領域、赤が 1 の領域で　

す。

　SPI信号の 伝送時の波形のイメージが多少

なりと掴めていただければ幸いです。

　次は、３つのデバイス

①　I/Oエクスパンダー　MCP23S17

②　D/Aコンバータ　MCP4922

③　512Kbit SPI SRAM　23LC512

の、コマンド電文の出し方を 説明します。

I/O エクスパンダ MCP23S17

　MCP23S17は、内部に 22個のレジスタを

持っている 16bitの I/Oエクスパンダです。

16bitというよりは、8bitの GPIOAと GPIOBの

2本の I/O ポートレジスタを持っています。

　他にも設定のレジスタが、多数あります。

マイコンの I/Oポートと同様に 入出力方向を

指定する　IODIRAと　IODIRB があります。

まだ理解してない機能が、多々あります。　

今回は、PortAを 入力、PortBを 出力に設定し

ます。　そして　PortBに 0x35を出力する電文

を示します。　尚、このデバイスは 元々 I2Cの

デバイスとして作られたようで、 説明が I2Cの

コマンドイメージで作られています。　その関係

で デバイスに ３本のアドレスを設定するピン

が存在します。 そしてその I2Cの アドレス選択

機能は、SPIにおいても生きています。

先頭の、コマンドバイトは、I2Cのコマンドそのも

ので、b7 ～ b1は デバイスアドレスで、　b0 が

1=Read／0=Write になっています。

でコマンドバイトは　0,1,0,0, A2,A1,A0 R/W で

今回、デバイスアドレスは 0 です。　よって

コマンドバイトは、Write時は、0x41、Read時は、

0x40 になります。

第２バイトは、内部レジスタアドレスです。

第３バイトは、書き込む、あるいは読み出す

データになります。

言葉で、説明すると分かりにくいので

次のページで図で説明します。

I/O エクスパンダ MCP23S17 電文

00h

BANK=1
アドレス

アクセス先

IODIRA

01h IPOLA

02h GPINTENA

03h DEFVALA

04h INTCONA

05h IOCON

06h GPPUA

07h INTFA

08h INTCAPA

09h GPIOA

0Ah OLATA

10h

BANK=1
アドレス

アクセス先

IODIRB

11h IPOLB

12h GPINTENB

13h DEFVALB

14h INTCONB

15h IOCON

16h GPPUB

17h INTFB

18h INTCAPB

19h GPIOB

1Ah OLATB

40h 00h FFh
PortAを 入力に設定
FFh --> IODIRA

コマンド
レジスタ

指定 データ

40h 10h 00h
PortBを 出力に設定
00h --> IODIRB

40h 19h 35h
PortBに 35hを出力
35h --> GPIOB

　電文は、基本上記のように、３バイトとなります。
今回、原因が 分かりませんが、PortB(GPIOB)に接続した 8個
の LEDに、任意のデータを表示する事が 出来ませんでした。　
最初に、このデバイスから　やり始めた関係で、RX220の SPI信
号の問題か、MCP23S17のコマンドが、間違っているのか分りま
せんでした。　切り分けのため、DAコンバータのMCP4922と
SRAMのアクセステストを行ってみました。　DACと SRAMは、正
常にアクセス出来ました。　　MCP23S17のコマンドの出し方に
問題が、ありそうです。　　検討中...

MCP23S17　内部レジスタ、アドレス一覧表

12bit D/A コンバータ MCP4922　電文

　MCP4922のコマンドは、2Byteしかありません。
極めて単純です。
　先頭バイトの　上位 4bit コマンドで、下位 4bitが
12bit D/A量子化数の 上位 4bit（ b11 ～ b8 ）と
なります、 ２バイト目に 12bit D/A量子化数の残り
8bit（ b7 ～ b0 ）が、並びます。

第１バイト

A/B BUF G/A SHDN b11 b10 b9 b8

第２バイト

b7 b6 b5 b4 b3 b2 b1 b0

　第１バイト上位 4bitですが、　A/Bは、 0=VoutA、
1=VoutB です。　出力チャネルの選択です。
　あとは、BUF=0、G/A=1、SHDN=1 で　問題ないよう
です。
チャネルAを 選択の場合： 0011
チャネルBを 選択の場合： 1011 に、なります。

それと、MCP4922から、アナログデータを　出力する
場合は、 忘れやすいのが、電文を出して、SS 信号
を Hi に戻した後に、MCP4922の独自信号である、
LDAC 信号を Hi から Lowに する必要があります。　
LDAC 信号の　ダウンエッジで、アナログ信号が
更新されます。

　今回は、スイッチング電源を使用しましたが、12bit
の　D/Aコンバータなので、出来ればノイズの少ない
電源を使用した方が、奇麗なアナログ出力が
得られると思います。

SRAM　23LC512 の通信電文

　23LC512に、送る電文は、バイトモードと、ページ
モードと、シーケンシャルモードの ３つが あります。
　今回は、単純な バイトモードで 通信を行います。
その場合は、電文長は、４バイト固定になります。

　まず、先頭に　Read と　Write を選択するコマンドを
送ります。　23LC512は、64KByte の アドレスレンジ
が あるので、アドレス情報を送るのに、２byte必要に
なります。 その後 １バイトのデータ転送を行います。

コマンド
02h

Address
b15～b8

Write 1Byte 1byte
データ

Address
b7～b0

コマンド
03h

Address
b15～b8

Read 1Byte 1byte
データ

Address
b7～b0

　今回は、バイトモードで、転送する実験を行いまし
たが、実使用では、ページモードや、シーケンシャル
モードの方が、転送効率が上がると思います。

　一つ、RX220側の処理で、説明を忘れましたが
RSPIにて、転送を始めるまえに、複数スレーブが
接続されている場合、SPIでは、選択するデバイスの
SS信号を アクティブ Low にする必要が、あります。
転送処理が、終了したら、SS信号を Hi に戻します。
　今回は、SS信号出力は 通常の I/Oポートとして
アクセスしています。

