
I2C通信機能を ソフトで実現、I/Oポート設定

P3
OD

b5

b3

b7
b6

b4

b0
b1
b2

CN2/ 28：NMI

CN2/26：I2C
CN2/27：I2C

CN2/25：RxD1

　左は、今回 I2Cで　使

用する予定の、ポート３

の I/Oポート表です。

　この中の b1と b2 を　

使用します。

　このポート３を 使用する上での注意点ですが

NMIの入力端子でもある、P35は、絶対に出力

ポートにしては、ならない。という事です。

出力ポートとして機能しない。　というだけでは

なく、誤動作の原因にもなりかねません。

　もう一つが、RxD1 として使用される P30 で

す。　この端子は 周辺回路 SCI1 に 占有され

てますので、 出力ポートに設定しても　I/O

ポートとしてアクセスできません。　RxD1 は、

データ受信側なので、入力に設定します。

　という事で、P35と P30 は、入力に設定します。

I2Cで使用する、P31(SCL)　と P32(SDA) は

出力に設定します。　P31 は、ずっと出力ポート

となります。　P32は、Write時の ACK読出し時、

データRead時に、一時的に 入力に なります。
初期化時の設定：

PORT3.PODR.BYTE = 0x06; // Data 初期値

PORT3.PDR.BYTE = 0x06; // 入出力方向 初期値

　// P35は 1 にしては いけない ハングする。？

PORT3.ODR0.BYTE = 0x14;

// b1 と b2 を オープンドレインに設定

データ読み取り時の設定：

　PORT3.PDR.BYTE = 0x02; // 入出力設定 Read時

に、なります。　　次に、ソフトで制御するので、I2C通信

シーケンスをしっかり理解する必要があります。　

　過去の動画に 「024 USB-I2C変換アダプタを作る、

続編」に　I2C通信シーケンスの いい資料が ありました

ので流用します。　私も 細かい事は 忘れていました。

I2C通信シーケンス (1)

　I2C通信は、SCLと SDAの２本の信号線
を用います。待機中 SCLと SDAは、両方
とも Hiレベルです。

[1] スタートコンディション：
 今から通信シーケンスを開始する事を
マスタが、スレーブに通知するための信
号です。　SCLが、Hiの期間中に SDAを
Hiから Lowに変化させます。
[2] ストップコンディション：
　マスタが、スレーブに対し通信を終了
させる時に出します。　SCLが、Hiの
期間中に SDAを Lowから Hiに変化させ
ます。

SCL

SDA

スタート
コンディション

SCL

SDA

ストップ
コンディション

Time Time

通常のデータビットでは、SCLが Lowの
期間中に、SDAを変化させるので、デー
タビットと、スタート／ストップ コン
ディションは、区別出来ます。

SCL

SDA

通常のデータビット

Time

1 0 0

1,0,0 の 3bit出力例

I2C通信シーケンス (2)

[3] リピートスタートコンディション：
　8ピンの EEPROMをアクセスする際に
リピートスタートコンディションを発行
する場合があります。
①　SCLが、Lowの期間に一旦、SDAをHi
　　にします。
②　SCLを Hiにします。
③　SDAを Lowにします。　

最近は、殆どのマイコンに、データ用フ
ラッシュROMが入っている事もあり
外付けで 8pinのシリアルEEPROMを使う
事が、少なくなってきました。
　これにより、リピートスタートコン
ディションを使う機会も減ったように思
います。

SCL

SDA

リピートスタートコンディション

Time

① ② ③

I2C通信シーケンス (3)

[4] I2Cコントロールバイト：
スタートコンディション直後、最初に
出力するバイトデータが、コントロール
バイトです。今回は、7bitアドレスで
説明します。 10bitアドレスも規格上は
ありますが、私は使った事が無いです。
①　一旦 SCLをLowに降ろします。
②　スレーブのI2Cアドレスの A6 ～ A0
　　の 7bitを 順次 bit単位でスレーブ
　　に書き込みます。
③　次にデータを書込む際は、Write
　　(SDA=Low)、読出す際は、Read
 (SDA=Hi)を、1bit 出力します。
　　スレーブからの ACK/NAK(1bit)を
　　受け取ります。

SCL

SDA

I2C コントロールバイトの出力
Time

A6 A5 A4 A3 A2 A1 A0 R/W ACK

マスタ出力
スレー
ブ出力

[5] データバイト出力（Write）：
　　内容(データ)が異なるだけで、コン
　　トロールバイト出力と同じです。

SCL

SDA

I2C データバイトの出力
Time

D7 D6 D5 D4 D3 D2 D1 D0 ACK

マスタ出力
スレー
ブ出力

I2C通信シーケンス (4)

[6] データバイト入力（Read）：
　　SDAの出力元が、入れ替わるだけで
　　シーケンスは、同じです。

SCL

SDA

I2C データバイトの入力
Time

D7 D6 D5 D4 D3 D2 D1 D0 ACK

スレーブ出力
マスタ
出力

[7] 一連の電文シーケンス例：
I2Cスレーブアドレス 3Ch に、

　　40h、41hのデータ2byteを 書き込む
　　例です。
①　スタートコンディションを実行。
②　7bitAddress = 3CHでコントロール
　　バイト(Write)を、出力します。
③　データ40hを データバイトとして
　　出力します。
④　データ41hを データバイトとして
　　出力します。
⑤　ストップコンディションを実行。

　ACK／NAKに関して：
　通常、通信制御コードの ACK、NAKは、肯定応答、否定応答の意味で、送り元が、受信
　側からNAKを受け取った場合は、再送信等のエラーリカバリ処理を行います。が、I2Cは
　どちらかというと、転送する最終バイト識別の意味合いで用います。

I2C通信機能を ソフトで実現、I/Oポート管理

　I2Cの信号は、SCLと SDAの ２本だけです。

であれば、　SCLと SDAの 瞬時の組み合わせ

は、４パターンだけです。

SDA(P32)　SCL(P31) P3に出力するデータ

 0 0　　　　　 00h

 0 1 02h

 1 0 04h

 1 1 06h

　よって、00h、02h、04h、06h を 差し替えなが

ら、ポート３に出力する事で、I2Cのシーケンス

が作れます。

　ビットデータの読み出し時は、SDA出力は

オープンドレインなので、１にしておいた方が

いいと思います。　

　であれば　04h、06h を　使う事になります。

　書き込み時と 読み出し時の SDAの入出力

切り替えは、以下のように ディレクション制御

を 行います。

PORT3.PDR.BYTE = 0x06; // 書き込み切り替え

　　　　　　　　　　　 // SDA=1 、SCL=1

PORT3.PDR.BYTE = 0x02; // 読み出し切り替え

　　　　　　　　　　　 // SDA=0 、SCL=1

　左の ４つの 出力データパターンと

上記 ２つの ディレクション制御を 組み合わせ

れば、I2C 通信シーケンスは 実現出来ます。　

　ここまで、約束事を決めれば、あとはプログ

ラムを作成した方が 早いと思います。

　RX220で プログラムを作成した場合、400Kbps

よりも 早く動く事も考えられます。 その場合

僅かな 空ループを入れて、オシロを見ながら

タイミング調整を 行う必要があります。

Wait未調整 Wait調整 １回目

ひと目盛 1us ひと目盛 4us

SCLの１ビット周期が 1usぐらいで、
パルス幅も狭い。　という事で 早過ぎる。

SCLの１ビット周期が 2.5usぐらいに調整
パルス幅を 1.2usぐらいに調整。 約 400Kbps

局部的に狭いパルス幅等の微調整１ 局部的に狭いパルス幅等の微調整２

Wait調整 ２回目 Wait調整 ３回目

ひと目盛 4us ひと目盛 4us

この波形は、Read時の波形です。
SCLパルスが Hiのタイミングで

データを、読み込みます。

Wait調整 ３回目

ひと目盛 4us

　C言語ソースで、具体的な Wait調整は、

// マイクロ秒レベルの時間待ち処理
#define WAIT_0 for(jk=0; jk<2; jk++)
#define WAIT_1 for(jk=0; jk<6; jk++)
#define WAIT_4 for(jk=0; jk<4; jk++)
#define WAIT_5 for(jk=0; jk<3; jk++)

　上記、for文のマクロ定義を行い、以下の様に
使用しました。
void i2c_start_cond(void)
{

Uchar jk;

 TP_D1_C1; // SCL = H , SDA = H
 WAIT_1; // μs オーダーの　時間待
 TP_D0_C1; // SCL = H , SDA = L
}
TP_D1_C1等のマクロは ソースを確認して下さい。
やはり、for文の空ループでは、待ち時間の分解能
が荒いので、出来れば アセンブラで NOP命令を
並べて調整したいです。

　　順番が、前後しますが

　右上の画像は、ポカミスで、I2Cバスの SCL、

SDA に、プルアップ抵抗を入れ忘れてました。

　後で、気付いたので 基板上に プルアップ抵

抗を、入れるスペースも無かったので、中継の

コネクタを作り、そこにプルアップ抵抗を入れま

した。　Vccと GNDの配線も通していたので、プ

ルアップ抵抗が付けられたという事です。

見た目が、みっともないですね。

　右下の画像は、上側の ICが、SPIインタ

フェースの MCP23S17です。 下側の ICが、

I2Cインタフェースの MCP23017 です。

　どうでもいい事ですが、MCP23S17の文字が

薄くなっているのは、MCP23S17を、先に使い

だした関係で、その分 触ってるからではないか

と思います。

