
不揮発性メモリ ROMの歴史

　マイコンのメモリは、RAMと ROMがあります。
RAMは、Ramdom Access Memoryの略で、
RAM上の どのアドレスでも自由に読み書き、
それも高速にアクセス出来ます。
　それに対し、ROMは Read Only Memoryで
読み出し専用メモリという事になります。
　読み出しは、RAMとほぼ同様に、どのアドレ
スでも自由に、読み出せます。
　それに対し書き込みは、ROMの種類に応じて
いろいろ制約があります。　初期の UVEPROM
は 窓付きROMとも呼ばれ、データを消去する
際は 窓部分に、強力な紫外線を当てて消去し
ます。 右上画像の 窓付きROM　27C32A（ 4K
byte ）は、5V単一で 書き込み出来ます。
　遥か昔の 2708(1Kbyte)などは 書き込み時
12Vと、書き込みパルスが　26V 必要で、書き
込み時のシーケンスも ややこしいようです。

　余談ですが、私は遥か昔 2732を 仕事で使っ
ていた時期が あります。 組み込み用途で Z80
マイコンに ROM 4K、RAM 2Kを実装してプログ
ラムを作っていました。　ROMも RAMも容量が
小さいのでプログラムは、アセンブラで作る事
になります。　左の 24C1024は I2C接続の電気
的に消去できる EEPROMです。　容量は 131K
byteあります。　2732よりは、だいぶ後の製品
と　思います。

昔は CPU、ROM、RAM、
周辺回路が 別々のLSIだった。

　それが、今の組み込みマイコンは、CPUに
ROM、RAM、周辺回路が、ワンチップになって
いるので、便利で制御CPU基板が、コンパクト
に作れます。　低消費電力で、実行速度も速く
ていい事ずくめのようですが、世の中の進歩に
合わせ高度な技術が実装されるので、技術者
にとっては、理解するのに 骨が折れる要素も
増えて来たような気もします。
　余談はさておき、RX220の E2フラッシュメモリ
（データ格納用）ですが、メモリアドレス配置は
0x0010 0000h ～ 0x0010 1FFFh の 8Kbyteで
す。　消去時は、先頭アドレスから、128byteサ
イズのブロック単位で、消去する事になりま
す。　それより細かい単位では消去出来ませ
ん。　よって全体が 8Kbyteなので、64ブロック
ある事になります。

 　

E2フラッシュ メモリ

消去時は、128byteの
ブロック単位に消去を行う。

0010 0000h

0010 1FFFh

それと 書き込み、読み出し時は、ワード単位
（ 2byte単位 ）で、アクセスする必要が　ありま
す。　よって、読み書きするデータのサイズは
偶数 byteにしておいた方がいいです。

　ちょっと余談ですが、RX220以前の RXシリー
ズでは、E2フラッシュメモリの配置アドレスが
書き込み時と、読み出し時で異なるという変な
仕様になってましたが、RX220は、書き込み時
と読み出し時は、同じアドレスです。

　因みに フラッシュメモリは、書き込み回数の
寿命が あります。　USBメモリや、SDカードに
も ありますよね。
　RX220の プログラムコード用フラッシュメモリ
は、最低 10,000回以上書き換え可能となって
います。 データ用 E2フラッシュメモリは、最低
100,000回以上書き換え可能と なっています。
　同じマイコンを、デバッグで 何回も使い回し
ていると、いずれ忘れた頃に寿命が来る。
という事になります。
　それとは、別の話ですが、秋月電子のRX220
マイコン基板の説明書には、５V電源を供給す
るように書いてありましたが、データシートを見
ると　3.3Vでも動くようなので、試してみたら
3.3Vで　正常に動作しました。
　前回の SPIデバイスのMCP23S17、MCP4922
、SRAM 23LC512 及びMCP23017 も 3.3Vで、
動く事を確認しました。

　何故、3.3V動作を確認したかというと　今回
使用した　I2C接続の 16文字２行の OLED表
示器の電源電圧が、3.3Vだったからです。

　それとデバッグ時に気付いたのですが、
Renesas Flash Programmerにて　プログラムを
書き込むと、E2データフラッシュも消える事を
確認しました。　
　プログラム書き込み後、必要であれば、パラ
メータデータも、プログラム実行時に、パソコン
から マイコンに転送して、E2フラッシュに書き
込む事になります。

　では、今回の E2データフラッシュの アクセス
プログラムの概要を 次ページから説明します。

今回の E2データフラッシュアクセス処理

　今回の E2データフラッシュアクセス処理は、
簡易版になります。

　フラッシュメモリに格納するデータは、用途と
して 半固定的な プログラムの設定を行うパラ
メータ的なデータと考えます。
　よって、E2データフラッシュ先頭に、１個パラ
メータデータを格納する 単純な用途を想定して
います。　そうする事により、E2フラッシュの書
き込みアドレスや、消去ブロックの切れ目を
サブルーチンを 使う方が、意識しないで使える
からです。　サブルーチンは ３本です。

void e2f_init(void);
 // E2フラッシュ初期化
void e2f_write(void *data, int siz);

 　　　　　// E2フラッシュ書き込み
void e2f_read(void *data, int siz);

　　　// E2フラッシュ読み出し

　書き込むパラメータデータは、構造体変数に
しておくと便利です。

// テストパラメータ データ構造体
typedef struct {

Ucharid, ver; // データ確認用
char tx0[18]; // OLED表示文字列１行目
char tx1[18]; // OLED表示文字列２行目
Ushort buf[256]; // 2バイト整数配列

} TEST_PARAM_DATA;

 TEST_PARAM_DATA Tpm; // 構造体 変数宣言

// E2フラッシュ初期化
 e2f_init();

// E2フラッシュへ　書き込み
e2f_write(&Tpm, sizeof(Tpm));

// E2フラッシュから、読み込み
e2f_read(&Tpm, sizeof(Tpm));

これ以上、簡単な使い方はないと思います。

　e2f_write関数、e2f_read関数の引数部分ですが
(void *data, int siz);
に、なっています。　void *data は、任意に宣言した
構造体変数の アドレスが　都度キャストしなくても渡
せるように void * と しました。 　型は、分からなくて
も 全体のサイズも、渡しているので、書き込むバイト
数は 分かります。　行儀の悪い Cプログラミングかも
しれませんが、ご容赦下さい。

　関数の中身の説明は省略します。
中身は、殆どが E2フラッシュ周辺回路レジスタの
設定なので、ソースを見ても何やっているのか分から
ないと思います。　RX220のデータシートと にらめっこ
する必要があります。

　あとは、動作確認の動画の前に、動作確認のプログ
ラムの動作シーケンスを、簡単に説明しておきます。
　E2フラッシュに書き込むデータは、前ページの
TEST_PARAM_DATA Tpm の　構造体変数を使用し
ます。

パラメータ データ初期化は
 Tpm.id = '@'; // パラメータ識別子
 Tpm.ver = 10; // バージョン番号
 str_copy(&Tpm.tx0, "2022-10-05");
 str_copy(&Tpm.tx1, "Test Project.");
 for(i=0; i<256; i++)
 {
 j = ~i; j = j << 8; j |= i;
 // 変数 j の 下位8bit = 0～255の値
 // 上位8bit = 下位バイトのビット反転値
 Tpm.buf[i] = j;
 }
上記のように行います。 メンバー変数 id と ver と
256個の配列変数には 16 bit の全てのビットを 設定
するデータを格納しています。　E2フラッシュから Tpm
構造体変数を読み出したとき、上記設定値が、入って
いるかチェックを行います。　メンバー変数 tx0 と tx1
は、チェックから、外れています。　電源ON直後の処
理で、 E2フラッシュから Tpmを 読み出し内容のチェッ
クを行います。　データ化けが確認されたら、テラター
ム側に、"* Invalid Parameter."を 表示します。

　起動時、パラメータデータを正常に読み込めたら
"* The parameter is normal."
を、テラターム側に送信し、パラメータ内の tx0 とtx1
文字列を　16文字２行の OLED表示器に表示しま
す。　この tx0 と tx1 の文字列は、テラターム側で
入力して、Tpm変数に設定して、Tpm変数を E2フラッ
シュに書き込む操作が出来ます。
操作メニュー表示は、　"1: Pm Clear , 2: Pm Initial ,
3: Pm Text In , 4: Pm OLED Disp , 9: Pm Write" が
あります。 番号で選択します。　テストでは、

①　２ の Pm Initial を 行う。

②　３ の OLED表示の ２行の文字列 入力を 行う。

③　４ で OLEDに正常に表示されるか確認する。

④　９ で E2データフラッシュに Pm を 書き込む。

⑤　一旦、マイコンの電源を切り、再度 電源ONで
　　OLEDに、設定した文字列が表示される事を
　　確認する。　正常に表示されたら、OKです。
　　これにより、電源を切っても E2フラッシュによって
　　パラメータを、保持されている事になります。

　では、確認動画をごらん下さい。

