
←足ピン

R8C/M110Aで 通信が出来ない障害

　前回の動画にて、R8C/M110Aにて、A/Dコンバ
ータを使用すると、シリアル通信が　出来なくなる
障害の説明を行います。　要は、足ピン数が、非
常に少ないため ADコンバータとして使える足ピン
に、TxDも 重複して機能をアサインしてあるので、
切り替えて使う事になります。 右の図は、I/O
ポート１の ビットマップ表です。 ポート１の b4にて
AN4と TxDが、重なっています。　b5も、アナログ
入力とは重なっていませんが、注意が必要です。

　初期化処理において、
最初に シリアル通信機能の初期化を行い
次に A/D変換機能の初期化を行っていました。
　よって、原因は、ポート１の b4、b5 の 機能切り
替え設定を、最初 シリアル通信で使用する設定
を書き込んでいましたが、A/Dコンバータの初期
化処理が 上書きして壊していました。

Port.1

b0b1

P1_1

b2

P1_2

b3

P1_3

b4

P1_4

b5

P1_5

b6

P1_6

b7

P1_7

8 11109 12 1413

AN1AN2AN3AN4AN7

TxDRxD

　処置は、IOCSルーチンの
R8CM1_IOCS_UART.a30（ シリアル通信処理 ）と
R8CM1_IOCS_ADC.a30（ ADC処理 ）との間で、
open_sw という フラグ変数を設けて、シリアル通
信を、オープンしていたら、ポート１の b4、b5 を
シリアル通信で、使う設定に初期化するように
しました。　よってこの場合、AN4は 使えません。
　110Aは、これでいいと思いますが、120Aは、足
ピンが、20本あるので、シリアル通信を AD設定
以外の、別のピンにアサインする事も出来ます。
よって、120Aの場合は、シリアル通信の足ピン設
定に応じて、ポート１の b4、b5 の 設定を変える
必要が　あります。

具体的な設定箇所

　ルネサスの資料
R8C/M11Aグループ、R8C/M12Aグルー
プ　ユーザーズマニュアル　ハードウェア
編の 147ページに　
ポート１機能マッピングレジスタ１（PMH1）
の　設定に関わる説明が載っています。
　すみません。　小さくて見るのが 困難で
すが、右の図です。

　ポート１の b4、b5 ビットを 両方 シリア
ル通信　TxD、RxDとして設定するには　
pmh1 = 0x05;　と設定します。
両方とも、ADあるいは、I/Oポートとして
使用する場合は、pmh1 = 0x00;　と設定
します。 右の図の赤枠で囲ったところで
すが、３bit ありますが　上位 bit　bx は
別のレジスタの bitで、通常 0 です。
　タイマーRC で、PWM等を 使う場合は
bx が　１ に なります。

.glb open_sw ; シリアルOPEN_SW

mov.b open_sw, r0l ; OPEN_SW 確認
jz p030 ; R0L = 0
dec.b r0l ; R0L = 1

p032:
dec.b r0l ; R0L = 2
jz p033
jmp p030 ; R0L = 0

p033: ; ROL = 2
mov.b #04h, pmh1 ; Port1機能マッピング設定(H)

; シリアル通信を行う時
jmp p031

p032: ; R0L = 1
mov.b #05h, pmh1 ; Port1機能マッピング設定(H)

; シリアル通信を行う時
jmp p031

p030: ; R0L = 0
mov.b #00h, pmh1 ; Port1機能マッピング設定(H)

; シリアル通信を使わない時
p031:

; 外部参照宣言
; ---

.glb open_sw ; シリアル通信 Open SW

uart0_act_pinsel_1:
mov.b #1, open_sw ; OPEN SW ON

uart0_act_pinsel_2:
.IF MPU_SEL==2 ; ★ R8C/M120A の場合のみコード生成

mov.b #2, open_sw ; OPEN SW ON

uart0_act_pinsel_3:
.IF MPU_SEL==2 ; ★ R8C/M120A の場合のみコード生成

mov.b #3, open_sw ; OPEN SW ON

open_sw: .blkb 1 ; シリアル通信 Open SW

　修正箇所は、赤文字の部分です。
修正箇所は、５か所に散在してます。
uart0_act_pinsel_1: で 探せば見つかります。
左のソースは、R8CM1_IOCS_UART.a30 です。

ソース修正箇所
緑の横棒は、上下の行間が、離れている事を
意味します。
こっちは、p032:　で 探せば見つかります。
右のソースは、R8CM1_IOCS_ADC.a30　です。

　前のページは、いきなり R8Cマイコンのアセンブ

ラのソースで 申し訳ありません。　

　で、次も アセンブラのソースの話となります。

前回の動画で作った10bit A/Dコンバータ用の量

子化数を、サーミスタ103ATの 温度値に変換する

テーブルデータを 取り込むソースの説明をしま

す。

　右のソースは、10bit分解能 ADC用の 103AT

サーミスタの温度読み取りテーブルです。

　前も、少し説明しましたが、　; は、それより右が

コメントになります。

_at103_table_10: は ラベルと呼びます。 ラベルは

ソース左端から記述して、最後に ： を付けます。

ラベルに使える文字は、だいたいC言語の変数に

付けられる文字と同じです。　先頭に 数字を持っ

て行くと、エラーになります。　

; 10bit 分解能 ADC用 103AT サーミスタ
; 温度 読み取りテーブル（ 1024 サンプル ）
; ---
_at103_table_10:
 .word -3000 ; No. 0 . -300.0 ℃ , 0.0000 V
 .word -3000 ; No. 1 .
 .word -3000 ; No. 2 .
 .word -3000 ; No. 3 .
 .word -3000 ; No. 4 .

 .word -3000 ; No. 50 . -300.0 ℃ , 0.2441 V
 .word -3000 ; No. 51 .
 .word -398 ; No. 52 . -39.8 ℃
 .word -394 ; No. 53 . -39.4 ℃
 .word -390 ; No. 54 . -39.0 ℃

A/D量子化数から温度データへ変換
　C言語では、実態がある（メモリ上に存在する）

もので、名前のある物は、変数名、関数名が

有ります。　しかし、アセンブラのラベルは、アドレ

スの指標でしかありません。　その下が、データで

も、プログラムでも、かまわないのです。

最低限の R8Cアセンブラの説明

　アセンブラのラベルは、アドレスの指標でしかな

い。　という事に、少々面食らった方も　いるかも

しれません。　元々は、遥か昔 マシン語で、プロ

グラムコードを打ち込む時代も、あったのです。

　マシン語でというと、２進数表記 1 と 0 の長い

表記では、あまりに効率が悪いので、16進数、ま

たは８進数で、マシン語は、表記します。

　で、16bit マシンであれば、16個並んだスイッチ

を、パチパチと切り替えて、マシンコードの　書き

込みを 行いました。　その効率の悪さを改善する

目的で、アセンブラは　作られました。　アセンブ

ラは、基本 マシン語と 1対１に　対応する言語で

す。　で、例えば 呼び出したいサブルーチンが

あったとして、そのサブルーチンの 先頭アドレス

が、呼び出しアドレスとなります。 汎用的なアセン

ブラ表現では　CALL　200H　とか、表す事に

なります。

　　

　しかし、　CALL　200H　では、それよりも前の

コードに、追加が、発生した場合、サブルーチン

の 先頭アドレスが、後ろにずれてしまいます。

　何番地後ろに、ずれたかを確認して　CALL命令

の　オペランドを 200H から　210H に　変更する

ことになります。　これは、面倒な事で、バグの原

因にも、なります。　よって、サブルーチンの頭に

アドレスの指標となる　ラベルを、付ける事になっ

たのです。　ラベルは、アドレスの指標だけで、

メモリは 消費しないので、ラベルを使う事で、アド

レスが、ずれる事は ありません。 よって、サブ

ルーチン先頭に　SUB_A とか　ラベルを　付けま

す。　そして呼び出す時は、 CALL SUB_A と

すればいい事になります。　SUB_Aの アドレスが

ズレても、ラベルを使えば、呼び出し側は 影響を

受けません。　因みに　R8Cマイコンでは、サブ

ルーチン呼び出しは、CALL ではなくて　JSR　と

記述します。

次に

　　.word -398 ; No.52 -39.8 ℃

とか、温度変換テーブルの一部を持ってきました

が、.word は、初期値を持った　2byte整数を メモ

リに確保します。　,word の後に 書き込む値を 記

述します。　; 以降は、コメントです。

1byte単位の場合は .byte に　なります。

今回の場合は、10bit A/Dコンバータの量子化数

に対応した温度テーブルなので、.word の 宣言

が　1024 個 あります。　このテーブルのファイル

名は、Ther_ADC_TBL_10.inc です。

このテーブルファイルを読み出す アセンブラファ

イルの名前は　ADv_ondo.a30 です。

R8Cマイコンの場合アセンブラファイルの 拡張子

は、.a30　です。

　つぎは、ADv_ondo.a30　のアセンブラソースの

説明を、行います。

 .include cpu_select.inc

 .section program, CODE,ALIGN

; 量子化数 --> 温度（ 0.1℃単位 ）

; 変換テーブル

; ---------------------------------------

.include Ther_ADC_TBL_10.inc

ADv_ondo.a30

　上は、アセンブラソース ADv_ondo.a30 の 先頭

部分です。 .include　cpu_select.inc は、

CPUが、M110Aか、M120A かを指定する役目と、

メーカーの周辺回路レジスタ宣言ファイルを取り込む

役目を 行います。

.section　program, CODE,ALIGN は、

セクション情報という リンカに渡される、

メモリ上の 配置情報です。

単純に このままで 使って下さい。

.include　Ther_ADC_TBL_10.inc　が、今回の

A/D量子化数を、温度値に変換するテーブルファイ

ルの　読み込み箇所です。　単純に、この場所に

Ther_ADC_TBL_10.inc の 内容が　展開されます。

; ***

; **　ADC量子化数 ---> 0.1℃単位の温度値を 返す **

; ** --- **

; ** 引数：　R1 ADC量子化数（ 0 ～ 1023 ） **

; ** --- **

; ** 関数値：　R0 = 0.1℃単位の 温度値（ -395 ～ 1095 ） **

; ** 　-39.5 ～ 109.5 ℃ **

; **

.glb $get_adv_ondo

$get_adv_ondo:

push.w a0 ; A0 保存

shl.w #1, r1 ; R1 の 量子化数を 2倍にする

mov.w r1, a0 ; R1 を A0 に 入れる

add.w #_at103_table_10, a0 ; 変換テーブル先頭アドレスを A0 に 加算

mov.w [a0], r0 ; A0が 示すテーブル内容を R0 に 入れる

pop.w a0 ; A0 元に戻す

rts

ソースの次ですが、8行の * で囲ったコメント

は、このアセンブラ関数の説明です。

.glb　は、外部宣言、外部参照を意味します。

後ろの $get_adv_ondo は、リンカに渡される

名前です。この関数は

C言語から呼び出す関

数です。

$get_adv_ondo: は

アセンブラ内では、

単に ラベルです。

C言語側で、呼び出す

場合は、頭の $は必要

ありません。

ondo =

get_adv_ondo(ad);

になります。

今回は、アセンブラ側

で　読み出す処理を

用意しました。

　最後に、アセンブラソースの場合、最後には

.end を記述して下さい。

アセンブラ ADv_ondo.a30 ファイルは、先ほど

２つに分けた部分と 最後の .end だけです。

　今回もダウンロード出来るようにしますので

自分のプロジェクトに 組み込まれる場合は、

ADv_ondo.a30 と Ther_ADC_TBL_10.inc をコピー

して、ADv_ondo.a30 を プロジェクトに加えれば

使えるように なります。

中には、

プロジェクトに加えるのは、どうするの。？

という人もいるかも 知れませんので、これについ

ては、動画で、HEWの操作を 説明します。

　

　

有線LANルータが
ハングする別の可能性

　有線LANルータの、放熱対策に関わる動画は
今回で 終わりにします。
　しかし 有線LANルータが、ハングする原因と
思われる事として今回、放熱対策を行いましたが
ハングする理由は、別に あるかもしれません。

メーカーさんに 失礼な事を書くかもしれませんが
あくまで、その可能性も考えられるという事で
ファームウェアの潜在的なバグという事も考えら
れます。　Windos環境では、GetTickCount関数と
いう API関数が、あります。

GetTickCount関数
パラメータ無し。
戻り値：　符号なし　32bit 整数
 　システムを起動した後の 経過時間を
　　　ミリ秒単位で 返す。

　比較的　短い時間で、イベント発生を 時間監視
するような用途　あるいは、短い時間待ちを作成
する用途で使用されます。

　通常のクライアントマシンのように、朝 電源を入
れて、帰るとき、電源を切るような使い方の場合
は、問題は、発生しません。　
　しかし、サーバーマシンのように、電源入れっぱ
なしの場合は、忘れた頃に問題が発生する場合
が あります。　内部で 継続的に 32bit 整数を、イ
ンクリメントしているので、いずれかは オーバーフ
ローして 0 に 戻ります。
　そのオーバーフロー直前に、タイマー監視　開
始時間として GetTickCountの値を読み取り、
TickCount が　0 に 折り返した後に、経過時間確
認に　２回目以降の読み取りを行うと、いつまで
経っても、後で読んだ値が、最初に読んだ値を越
える事は、ありません。　因みに 2　-1は、
4,294,967,295 です。　これを、1日分の ミリ秒値
1000x60x60x24 で割ると　約　49.7日になります。

32

　という事で、今回の有線LANルータの　1ヶ月以
上経過すると ハングするという現象に　電源ON
後、何日経過してダウンしたかとか 計った事が
無いので、ハッキリした事は言えませんが、可能
性は 否定出来ないと 思います。
　であれば、49日経過する前に、ルータを再起動
するといい。　という事になります。

　IT企業は、別ですが、個人の家で、電気を消し
て寝ている時は、パソコンも電源を落としている
ので、ルータとかも、一括電源を落としていいと
思います。　例えば、夜中の 12時に ルータの電
源を OFF して、朝　7時に 電源を ONする。
それを自動で、運用できると いいですね。
　そのような タイマーも、今 検討中です。

　今は、ギガビットイーサネットになっているので
イーサネットポートも 処理するCPUも かなり高速
なものを使用しているでしょうから、夜中の電源を
切る事は、省エネにつながるのではと思います。

余談、A/Dコンバータのデータについて

　ページの右半分が、空いていたのでちょっと余談
を、書いておきます。
　A/Dコンバータは、アナログ信号の電圧を読み
取って、電圧値に対応する デジタルデータ量子化
数に、変換します。　多分、この動画を視聴されて
いる方は、この事はご存じと思います。
　ただ、実際に使ってみると　下位 2bit 程度が、パ
ラパラとノイズが乗って動きます。　で、 A/Dコン
バータは、下位 2bit 程度は、ノイズで、パラパラと
動いて当たり前と考えて下さい。　で、このノイズの
影響を少なくするには 今回は、連続５回の単純平
均処理を行いました。　場合によっては　移動平均
を取る場合も あります。
　それと、今回A/D入力の前段に、5Vレール to
レールのオペアンプを入れました。　このタイプの
オペアンプは スルーレイトが遅いので、それが い
い意味で、ローパスフィルターになっているという事
も あります。

