
表示操作基板と アルミパネル

　下の画像は、24時間タイマーの表示操作基板
と　今回 切削加工する アルミパネルです。

　このアルミパネルは、タカチの YM-180という
アルミケースの天板です。　左右の側板を切削
加工の都合で、左右に 広げてます。



　右側の 手書きの寸法図は、表示操作基板の　押しボタ

ンスイッチ間の寸法を、出来る限り　ノギスで計り 手書きし

たものです。　

　この図は、表示操作基板を、前面というか 押しボタンス

イッチが見える側から描いた図に なります。 押しボタンの

スイッチ穴を切削加工する場合は、パネルの裏側から行

います。　よって右側の図面全体が、左右反転した形にな

ります。

　右の図面には、書いてありませんが、8文字2行の小型

LCDを取り付ける予定なので、30x15mm の 液晶窓の 穴

も 切削します。 液晶パネルの固定は、木製はたは、樹脂

製の ホルダを作り、アルミパネルに　両面テープで貼り付

けようと思います。

それと、ブザー音が聞こえやすいように、３つほど穴を

開けておこうと思います。

押しボタンスイッチ間の寸法を　書き込んだ紙



JWCADで作成した左右反転の図面

　JWCADの寸法線の

数値が、あまりに小さ

くて、申し訳ありませ

ん。　

　四角い穴を開けるの

に、中心座標を指定

するやり方で、穴を開

ける事にします。

　穴の種類は　３種類

で、①　照光式押しボ

タンスイッチ 16.4x16.4

②　緑、黄色の押しボ

タンスイッチ　15x15

③　LCD表示窓穴

30x13 単位は mmで

す。



CNC1610での切削加工の手順

　まず、先ほどの JWCADの 図面を　一度に切

削する事は 加工範囲が　広くて 出来ません。

　右側の 10個の押しボタンスイッチの穴と

左側の 　LCDの表示窓穴と、3つの穴を　２回

に分けて 切削します。

　CNC1610では、あまり太いエンドミルは使え

ないと思いますので、φ1mmのエンドミルで

切削します。　φ1mmのエンドミルは、折れや

すいので、深さを　0.1mmずつ 下げて 最後は

1.1mmまで、下げて、11回のパスで 削ろうと思

います。

　あと、念のため、深さの１ステップ毎に本来の

寸法で切削した後に、0.9mm内側を、逆回りで

削ろうかと思います。　切り子の詰まりを防ぐた

めです。　溝が深くなると切り子の詰まりによっ

て、エンドミルが折れる恐れがあるからです。

刃物進行方向

　切削溝が深くなると、左右に壁が
出来るため　切り子の逃げ場が、
なくなり、刃物の進行方向前に　切
り子が、固まってたまる傾向がある
　と思われます。

　左の図は、外側と内側の
二重に削った場合の刃物が
通った軌跡をイメージした図
です。　刃物は上から見て
時計回りに回転します。
よって　青の矢印のように切
り子が横に逃げます。　前に
溜まる事は、ありません。



CNC1610　NCファイルの定型コード群

★  NCファイル先頭の 定型的コード群

G90  ( 絶対座標指令 )

G1 Z3 F200　( 刃先を Work上面より3mm上に

              上げる )

         ( 切削移動速度 200mm/Minを設定 )

M03 S1000   ( 主軸正転、主軸速度:最大 )

G0 X... Y...( 切削開始位置上に移動 ）

G1 Z-0.1    ( 刃物先端を Workに降ろす )

            ( この場合、刃先を 0.1mm )

            ( 食い込ませる )

★  NCファイル最後の 定型的コード群

G1 Z3　　( 刃先を Work上面より 3mm上に

           上げる )

G0 X0.000 Y0.000  ( 原点上に 移動する )

M5    ( 主軸停止 )

M2　　( プログラム終了 )

  ( ) 内の緑色のコメントには、漢字を書きま

したが、実際のNCコードでは、ASCII文字だけ

に して下さい。

　過去の動画 030の資料を
一部引用します。



★ ブロック間移動時の 定型的コード群

G1 Z3　　( 刃先を Work上面より 3mm上に 上げる )

G0 X... Y...  ( 次の切削開始位置上に 移動する )

G1Z-0.1  ( 刃先先端を Workに降ろす )

         ( この場合、Workに 刃先を 0.1mm )

         ( 食い込ませる )

  ( ) 内の緑色のコメントには、漢字を書きました

が、実際のNCコードでは、ASCII文字だけに して下さ

い。



閉じた図形、外側は時計回り
内側は反時計回り

  プリント基板のパターンデータの時も 今回

の iPhoneF200.nc でも、外周を回る切削デー

タは時計回りで、内周を回る切削データは、反

時計回りでした。

  何らかの約束事があるのだと思いますが、

Web検索で、的を得た回答は見つけられません

でした。

B

A

C

D

E F

GH外周(A-B-C-D)

内周(E-F-G-H)

赤線は刃物が
回る方向

  この外周は時計回り、内周は反時計回りの

約束事に従う事にします。

　人間は 四角形A-B-C-Dと、四角形E-F-G-H

を見れば、A-B-C-Dが外周で、E-F-G-Hが内周

とすぐ分かります。

　しかし機械は外側と内側の判定が、難しい

場合があるので、多角形の面積計算で得られ

る法線ベクトルを用いて外周、内周の判断を

しているのではと 思われます。
 

  法線ベクトルは、時計回りの点列の多角形

であれば 面積計算の答えが (－)です。

　反時計回りの点列の多角形であれば、

面積計算の答えが (＋)です。

面積がほしい場合は、絶対値を取ります。



簡単なテストデータの作成

　前ページの二重の四角のデータに座標値を

付けて NCデータを作成します。

点名
B

A

C

D

E F

GH
A

B

C

D

E

F

G

H

X座標 Y座標

20 20

20 60

80 60

80 20

35 30

65 30

65 50

35 50(20,20)

G90
G1 Z3 F200
M03 S1000
G0 X20 Y20  ( Point A )
G1 Z-0.1
G1 X20 Y60  ( Point B )
G1 X80 Y60  ( Point C )
G1 X80 Y20  ( Point D )
G1 X20 Y20  ( Point A )
G1 Z3
G0 X35 Y30  ( Point E )
G1 Z-0.1
G1 X65 Y30  ( Point F )
G1 X65 Y50  ( Point G )
G1 X35 Y50  ( Point H )
G1 X35 Y30  ( Point E )
G1 Z3
G0 X0 Y0
M05
M02

　凡そ、CNC1610の NCコードのイメージは、掴

めましたでしょうか。 今回は 使用しないので

円弧のGコードは、説明していません。円弧の

Gコードは、030の動画を 参照して下さい。



切削刃物のオフセットを 考慮する

　フライス盤とか使いなれている方にとっては

当たり前の事ですが、初心者にとっては、切削

刃物のオフセット って、何。？ という方も　おら

れると思いますので簡単に説明しておきます。

　NCコードというか、Gコードで指定する座標値

は、基本的に、主軸の回転中心の XY座標とな

ります。　これは、そのまま　切削刃物の回転

中心の、XY座標です。　且つ、刃物には 刃先

径が、あります。　今回使用する刃物は、

φ1mmです。　この刃物で、 左下座標が、

( 0, 0 )で、 10mm の　四角い穴を 開けようとす

ると　単純に考えると、座標の移動は、

( 0, 0 )-( 0, 10 )-( 10, 10 )-( 10, 0 )-( 0, 0 ) と

なりますが、切削した結果は、刃物の半径分

外側を、削ってしまう事に なります。

1
(0,0)

2
(0,10)

3
(10,10)

4
(10,0)

11mm

1
1
m
m

刃物

　左の図は、刃物の

半径分　外側を、

削ってしまう図です

が、イメージが掴め

ましたでしょうか。？

　よって、刃物の半径分 内側に引っ込めた座

標値で　刃物センターを指定して、最終的に目

標値の　10 カケル 10mm で削る事にします。

　この、刃物の半径分 内側に引っ込めた座標

値の事を 刃物のオフセット、を考慮した座標値

という事になります。



Job_1

CAD図面の寸法値から、座標値を生成する、押しボタン穴 側

　JWCADの図面から、CNC1610のNCコードで

指定する座標値を生成します。　

1 2 3 4 黄

5 6 7 8 緑

(12.6, -7.7)

(35.46, -7.7)

(58.32, -7.7)

(81.18, -7.7)

(104.04, -7.7)

(12.6, -68.66)

(35.46, -68.66)

(58.32, -68.66)

(81.18, -68.66)

(104.04, -68.66)

(0, 0) 原点 (113.8, 0)

(0, -74.4) (113.8, -74.4)

　左上 ネジ穴位置を、原点にします。

よって、第４象限に配置される事になりま

す。

ボタン位置は、中心座標で指定します。

照光式押しボタンスイッチの 穴寸法

15.4 × 15.4

黄色、緑の押しボタンスイッチの 穴寸法

14 × 14

ネジ穴の寸法  3mm

CNC1610では、センタ穴 φ1mmだけ

開けます。



Job_2

LCD
窓

CAD図面の寸法値から、座標値を生成する、LCD窓穴 側

(6.5, -15)

(0, 0) 原点

(40, -15)

(40, -30)

(40, -0)

3
0

13

　LCD窓の 左上角を、原点にします。

よって、第４象限に配置される事になりま

す。　ネジ穴の寸法  3mm

CNC1610では、センタ穴 φ1mmだけ

開けます。

　NCファイルの名前は、前ページの Job_1 と

この、ページの Job_2 という名前で、２本

出力します。



CNC1610用の Gコードファイルを Delphiで 作成
　Delphiは、Windowsアプリ開発用の統

合開発環境です。　私は、慣れが あっ

て、Delphiが 早く確実に作れますので、

Delphiを　使用します。

　NCコード文字列を 出力するのは、

Delphiの メモ帳コンポーネントです。

　一通り、NCコード文字列を 出力し終

わったら、メモコンポーネントの機能で、

テキストファイルとして、出力出来ます。

　左の、プログラムは　開始処理と、終

了処理の 手続きです。

（ C言語でいうところの関数です。 ）

開始処理呼び出しは、nc_start; に　

なります。

終了処理呼び出しは、nc_end; に なり

ます。

//********************************
//**  開始処理                  **
//********************************
procedure TForm1.nc_start;
begin
    Memo1.Lines.Add( 'G90' );           // 初期化 NCコード 1
    Memo1.Lines.Add( 'G1 Z5 F200' );    // 初期化 NCコード 2
    Memo1.Lines.Add( 'G0 X0.0 Y0.0' );  // 初期化 NCコード 3
    Memo1.Lines.Add( 'M03 S1000' );     // 初期化 NCコード 4
    Memo1.Lines.Add( '' );  // 空白挿入
end;

//********************************
//**  終了処理                  **
//********************************
procedure TForm1.nc_end;
begin
    Memo1.Lines.Add( '' );  // 空白挿入
    Memo1.Lines.Add( 'G1 Z3' );         // 終了処理　NCコード 1
    Memo1.Lines.Add( 'G0 X0.0 Y0.0' );  // 終了処理　NCコード 2
    Memo1.Lines.Add( 'M5' );            // 終了処理　NCコード 3
    Memo1.Lines.Add( 'M2' );            // 終了処理　NCコード 4
end;



//************************************
//**  センター穴あけ 1.1mm開ける    **
//** ------------------------------ **
//**  xc, yc : 穴の中心座標         **
//************************************
procedure TForm1.nc_wr_hole( xc, yc: Double );
var
i:  Integer;
zd: Double;
tx: String;
begin
    Memo1.Lines.Add( 'G1 Z3' );     // 一旦、刃物を上に上げる
    tx := Format('G0 X%6.2f Y%6.2f', [xc, yc]);
    Memo1.Lines.Add( tx );              // NCコード出力
    zd := -0.1;
    for i:= 1 to 11  do
    begin
        tx := Format('G1 Z%5.2f', [zd]);
        Memo1.Lines.Add( tx );          // NCコード出力
        Memo1.Lines.Add( 'G1 Z3' );     // 刃物を上に上げる
        zd := zd - 0.1;             // 刃物深さ更新
    end;
    Memo1.Lines.Add( 'G1 Z3' );     // 刃物を上に上げる
end;

　左のソースは、ネジ穴のセンタ穴明け

処理 nc_wr_hole です。

　引数として、穴中心の X座標、Y座標

を 渡します。

　for 文で　11回、回してますが、0.1mm

単位で、穴を開ける切り子を出すため

に、都度 刃物を　上に上げて、次の深

さに、刃物を下げます。　1.1mmまで、

穴を開けたら　終りに なります。



//************************************
//**  四角穴の切削 NCコマンド出力   **
//**  xc, yc :  四角形の中心座標    **
//**  xl, yl :  四角穴の 横幅、高さ **
//************************************
procedure TForm1.nc_wr_rect( xc, yc, xl, yl: Double );
var
    i:  Integer;
    tx: String;
    sw: Byte;
begin
    Nr.xc := xc;
    Nr.yc := yc;
    Nr.xl := xl;
    Nr.xl := yl;
    Nr.xho := (xl / 2) - Em_Rad; // 外周長さ生成
    Nr.yho := (yl / 2) - Em_Rad;
    Nr.xhi := Nr.xho - 1;         // 内周長さ生成
    Nr.yhi := Nr.yho - 1;
    tx := Format('( Center  X=%6.2f, Y=%6.2f )', [Nr.xc, Nr.yc]);
    Memo1.Lines.Add( tx );  // 中心座標のコメント
    sw := 0;
    Nr.zd := -0.1;          // 0.1mm刃物を食い込ませる

　左のソースは、

四角穴の切削　NCコマンド出力処理

nc_wr_rect;　です。　

以下は、引数です。

xc, yc : 　四角形の 中心座標

xl, yl : 　四角形の 横幅、高さ

begin  の 下では、Nr という構造体に

四角形作図に関わるパラメータを、計

算して入れ込んでます。

　Nr は、複数のパラメータを、引数とし

て　並べて 下位の手続きを呼び出すの

が、煩わしいので、Nr という 構造体に

入れ込んでます。　ここでは、nc_wr_

rect 手続きは、中心座標と、幅、高さを

与えれば、四角形を切削してくれると

解釈して下さい。



    for i:=1 to 11  do
    begin
        nc_rect_layer( sw );      // レイヤー １面切削
        NR.zd := Nr.zd - 0.1;   // 0.1mm 刃物を深くする
        sw := 1;
    end;
    Nr.zd := 3;
    nc_z_out( Nr.zd, 1 );                  // 刃物を 3mm上げる
end;

　左のソースは、四角穴の切削　NCコ

マンド出力処理　nc_wr_rect;　の

続きです。　

0.1mm 単位のレイヤーを　11回　繰り

返します。

　最後に、刃物を　3mm 上げます。

ループの中で、

nc_rect_layer( sw ); は １レイ

ヤー分の 切削処理 手続きです。

　パラメータの大半は、Nr 構造体で

渡してます。



//****************************
//**  レイヤー １面切削     **
//****************************
procedure TForm1.nc_rect_layer( sw: Byte );
begin
    if sw = 1  then  Memo1.Lines.Add( '' );  // 空白挿入

    nc_xy_out( Nr.xc -Nr.xho, Nr.yc -Nr.yho, 0 );   // 1.外周切削
    nc_z_out( Nr.zd, 1 );                  // 刃物降ろす
    nc_xy_out( Nr.xc -Nr.xho, Nr.yc +Nr.yho, 1 );   // 2.外周切削
    nc_xy_out( Nr.xc +Nr.xho, Nr.yc +Nr.yho, 1 );   // 3.外周切削
    nc_xy_out( Nr.xc +Nr.xho, Nr.yc -Nr.yho, 1 );   // 4.外周切削
    nc_xy_out( Nr.xc -Nr.xho, Nr.yc -Nr.yho, 1 );   // 1.外周切削
    Memo1.Lines.Add( '' );  // 空白挿入
    nc_xy_out( Nr.xc -Nr.xhi, Nr.yc -Nr.yhi, 1 );   // 1.内周切削
    nc_xy_out( Nr.xc -Nr.xhi, Nr.yc +Nr.yhi, 1 );   // 2.内周切削
    nc_xy_out( Nr.xc +Nr.xhi, Nr.yc +Nr.yhi, 1 );   // 3.内周切削
    nc_xy_out( Nr.xc +Nr.xhi, Nr.yc -Nr.yhi, 1 );   // 4.内周切削
    nc_xy_out( Nr.xc -Nr.xhi, Nr.yc -Nr.yhi, 1 );   // 1.内周切削
end;

　これが、１レイヤーの切削処理で

指定した、四角形中心座標を中心に

仕上げ寸法となる　外周切削を　点列

1 2 3 4 1 と 切削して行きます。

そして、切り子対策のための、内周切

削を　点列　1 2 3 4 1 と　行っていきま

す。

ちなみに、nc_xy_out は、引数　ｘ、ｙ が

移動先座標で、 3番目のパラメータが　

0　の時　G0 、1 の時　G1 で、切削する

指定です。　因みに　Nr.xho, Nr.yho

は、半分の幅、半分の高さの 値です。

Nr.xhi、Nr.yhi は　内周側の半分の

幅、半分の高さの 値です。

Nr.xc、Nr.yc は、中心座標です。

　



//********************************
//**  Job 2  LCD窓穴、穴 3個    **
//********************************
procedure TForm1.Button6Click(Sender: TObject);
begin
    nc_start;
      nc_wr_rect( 6.5, -15, 13, 30 );    // LCD窓穴
      nc_wr_hole( 40.0,   0.0 );    // ネジ穴 1
      nc_wr_hole( 40.0, -15.0 );    // ネジ穴 2
      nc_wr_hole( 40.0, -30.0 );    // ネジ穴 3
    nc_end;
end;

　今まで説明してきたプログラムを、呼び出して

いる処理です。　Job_1 側は、プログラム量が、

やや多いので、Job_2 を 表示します。

　最初に　nc_start;　（ CNC1610の 初期化

処理 ) を　呼び出しています。

nc_wr_rect( 6.5, -15, 13, 30 );　が

LCDの 窓穴の四角形加工です。　因みに

４つの引数は、X中心座標、Y中心座標、横幅、

高さ　です。

nc_wr_hole( 40.0,   0.0 );　は、センター穴開け

加工です。　２つの引数は、穴あけ座標値の

X と　Yです。

最後に、nc_end;　にて　CNC1610に　終了処理

を　通知します。

　このように、これらのサブプログラム手続きの

引数に　適切な値を 設定する事により、

NCコードを　生成する事が 出来ます。


