
C,C++と Delphiの PASCAL言語との違い

　C,C++と Delphiの PASCAL言語との違い　と

いうタイトルを付けましたが、厳密には、４つに

分かれます。　Cと C++、そして PASCAL と

ObjectPASCAL の ４つです。

　まず、C と PASCALは、最初に出て来た基本

となる言語です。　両方とも　ストラクチャードプ

ログラミングを 意識した言語で　データの構造

化を定義する機能があります。

　Cの場合は、struct または、typedef struct

で、複数の単純変数、あるいは別の 構造体変

数をメンバーとする独自のデータ型を、宣言す

る事が出来ます。

PASCALの場合も、record 宣言で、独自の

データ型を、宣言する事が出来ます。

　Ｃ言語の 構造体変数　宣言の例：

 typedef struct {

 int vh; // 上限電圧 判定値

 int vl; // 下限電圧 判定値

 int ih; // 最大電流 判定値

 } MAX_VA_PARAM; // 最大値パラメータ

 MAX_VA_PARAM Vpm; //構造体変数宣言

　PASCAL言語の 構造体変数　宣言の例：

 MAX_VA_PARAM = record

 vh: integer; // 上限電圧 判定値

 vl: integer; // 下限電圧 判定値

 ih: integer; // 最大電流 判定値

 end;

 Vpm: MAX_VA_PARAM; //構造体変数宣言

　このストラクチャードプログラミング、構造体

変数の考え方は、のちに　オブジェクト指向へ

と、発展していきます。　という事で、 C++ と

ObjectPASCAL は、オブジェクト指向言語で

す。　オブジェクト指向言語を正面から理解しよ

うとすると難しい要素が、いくつか出てきます。

オブジェクト指向プログラミングの基本３概念

　・　カプセル化 （ encapsulation ）

　・　継承 （ inheritance ）

　・　多態性 （ polymorphism ）

訳の分からないような言葉ですが、この中で

カプセル化は、構造体から発生したようなとこ

ろがあります。　構造体は、ある処理を行う上

で、必要となる変数群を　メンバー変数として

ひとつに まとめた物です。

　構造体に、更に　そのデータ処理を行う関数群

も、まとめてメンバー関数として入れ込んだ物

が、オブジェクト指向でよく見る　クラスです。

　クラスは、ある処理を行う上で、必要なデータと

データを操作する関数群を、１本に まとめた物で

す。　かつ、不用意に外部から内部変数を アク

セス出来ないように、プロテクトの機能も備えて

います。　このクラスを使う事で、重要なデータを

安全に　カプセル化する事が出来る訳です。

このクラスの事を オブジェクトと　呼ぶ事もありま

す。　次の継承は　元々あるクラスを　親クラスと

呼ぶ事にします。　その親クラスから、子クラスを

生成する事が出来ます。　それを　継承 と 呼び

ます。　ただ継承しただけであれば、全く同じ機

能のクラスです。 親と同じ機能ですが、親と同じ

コーディングは、必要ありません。　親のコードを

呼び出す事が出来るのです。

　このあたりから、初心者の方にとっては、難し

くなってくるかも しれません。　オブジェクト指

向の舞台裏というか、メモリ管理がどうなって

いるかというと、親の継承によるオブジェクト生

成で、データ領域は新規に確保されますが、

親が持っているコード（関数等のプログラム）は

親の関数呼び出しの ポインタを、継承した子ク

ラスが　持っていると思われます。 よって、同じ

処理の関数は、親子共通で、１本の関数を呼

び出します。　で、データは、子の領域をアクセ

スします。　このあたりは、データ領域の先頭

ポインタを持っているのでしょうね。

そして、子のクラスには、親の機能にない、新

しい機能を追加する事が出来ます。

　よって、子クラスでは、新しい機能だけコー

ディングすればいい事になります。

　あと、親のメンバー関数と同じ名前で、子クラス

のメンバー関数で、上書きする事も出来ます。

　オーバーライドといいます。

　もう一つ、同じ関数名で、引数の型や、個数が

異なる関数を　複数用意する事も出来ます。

　これを　オーバーロードと　いいます。

この場合は、呼び出し側で、引数の型がスイッチ

となり、型が 一致する関数が、呼び出されます。

　申し訳ありませんが、多態性は、私も　よく理解

していません。　状況により機能が変わるという

意味では、オーバーロード、あるいは　オーバー

ライド的な、状況を意味すると思います。

今回は、オブジェクト指向の話では無いので、

このあたりで、オブジェクト指向の話は

終りにします。

C++と Delphiの ソースファイル構成

　C++の場合は、右の Test1.h内に インクルー

ドファイルの呼び出しや、フォームの クラス宣

言が作成されます。

　Test1.c内に、クラス内の イベントハンドラや

独自に作成した関数の実装部を 記述します。

　Delphiのソースは、最初に　unit名が 宣言さ

れ、その下に interface部があり、uses節で、

呼び出す モジュール名を指定しています。

　その下に　フォームのクラス宣言が、作成さ

れます。　その下の、var 節にて

Form1: TForm1;　左のように フォームの実態

が、宣言されます。　その下に implementation

部があり、イベントハンドラの実装や、独自手

続き、独自関数の　実装を　記述します。
　Delphiの場合は、C言語の ヘッダファイルと

Cファイルが、ひとつになったような状態です。

　Ｃ++言語のソースファイル構成： Test1の場合

 1つのフォームに Test1.Cと Test1.H のソース

 が生成される。コンパイルで Test1.objが生成

 される。

Test1.h

Test1.c
Test1.objコンパイル

　Delphiの ソースファイル構成：Test1の場合

 1つのフォームに Test1.pasのソースが　生成

される。コンパイルで Test1.dcuが 生成される。

Test1.pas Test1.dcuコンパイル

C、C++と Delphiの 違い

項目 C、C++ Delphi

変数の宣言
(表現できる

レンジ)
変数のByte数

char b; 　　(-128～127) 1 byte
short int i; 　　 (-32768～32767) 2 byte
int i; (-2147483648～2147483647) 4 byte
long int i;
 (-2147483648～2147483647)4 byte

unsigned char b; 　　 (0～255) 1 byte
unsigned short int i; (0～65535) 2 byte
unsigned int i; (0～4294967295) 4 byte
unsigned long int i;(0～4294967295)4 byte

float a; (1.17E-38～3.40E+38) 4 byte
double a; (2.22E-308～1.79E+308) 8 byte
long double a; (2.22E-308～1.79E+308)8 byte

参照したサイトの情報が古い可能性があります

b: ShortInt; (-128～127) 1 byte
i: SmallInt; (-32768～32767) 2 byte
i: integer;
 (-2147483648～2147483647) 4 byte
i: Int64; (-2 ～2 -1) 8 byte

b: Byte; (0～255) 1 byte
w: Word; (0～65535) 2 byte
i: Cardinal; (0～4294967295) 4 byte
i: UInt64; (0～2 -1) 8 byte

a: Single; (1.17E-38～3.40E+38) 4 byte
a: Double; (2.22E-308～1.79E+308) 8 byte
a: Extended; (？～？) 10 byte

63 63

64

　基本的なところでの違いは、記述の仕方で　C、C++は　変数型名　変数名； ですが、　Delphiは、左右逆で、変

数名：　変数型名； です。

　Delphiの 10byte 浮動小数点の Extended は、Delphi 10.4 Community Edition で、使えるのか試したところ 使え

ました。 sizeof 演算子で サイズを確認したところ　10byte でした。 レンジが どの程度あるのかは不明です。

 少なくとも　Doubleより高精度と 思います。

項目 C、C++ Delphi

関数と手続き

C,C++では 値を返す、返さないに
関わらず　関数として扱います。

intの値を返す関数：
int test_func(int a);

値を　返さない関数：
void test_func(int a);

引数を渡さない関数：
int test_func(void);

Delphiでは、値を返さない処理を 手続き
値を返す処理を 関数として扱います。

Integerの値を返す関数：
function test_func(a: Byte): Integer;

値を返さない手続き：
procedure test_proc(a: Byte);

引数を渡さない手続き：
procedure test_proc;
引数を囲むカッコから、省略されます。

文字列変数
宣言

通常は、以下の表現で使えます。

String tx; // 文字列変数の宣言
または AnsiString tx;
 tx = "Abcd"; // 文字列の代入

昔の char tx[80]; とかの Null終端
の文字列も 使用できます。

Delphiの文字列は、以下の表現で使えます。

 tx: String; // 文字列変数の宣言
 tx := 'Abcd'; // 文字列の代入

ASCII文字列 255文字までの 短い文字列変数も
あります。　　　　 この部分が最大255です。
　tx: String[80]; // この場合は、最大
 // 80文字までの文字列変数になります。

項目 C、C++ Delphi

値の代入

　int j; に　10を 代入する時
 j = 10; // = で 右辺を 左辺に
　　　　　 // 代入します。

　j: Integer; に　10を 代入する時
　j := 10; // := で 右辺を 左辺に
　　　　　　// 代入します。

if 文で使用す
る

関係演算子

= = は、左辺と右辺が等しい時 True
!= は、左辺と右辺が等しくない時 True
 > は、左辺が 右辺より大きい時 True
 < は、右辺が 左辺より大きい時 True
>= は、左辺が 右辺より大きいか、等し
　　い時 True
<= は、右辺が 左辺より大きいか、等し
　　い時 True

 = は、左辺と右辺が等しい時 True
<> は、左辺と右辺が等しくない時 True
 > は、左辺が 右辺より大きい時 True
 < は、右辺が 左辺より大きい時 True
>= は、左辺が 右辺より大きいか、
　　　　等しい時 True
<= は、右辺が 左辺より大きいか、
　　　　等しい時 True

文字列定数の
囲み

　"～"を 使用する。
　tx = "ABCDE";
 c = 'A'; // 1byteの文字変数に 文字
 // コードの代入は 'を使う

　1文字でも 文字列でも ' を使用する。
 tx := 'ABCDE';
 c := Ord('A'); // byte変数 c に Aの
　　　　　　　　　// 文字コードを 代入
 Edit1の Textプ

ロパティを示す
 Edit1->text = Edit2->Text; Edit1.Text := Edit2.Text;

項目 C、C++ Delphi

複数の文を
囲む

 中カッコを { ～ }を 使います。

if(sw == 1)
{ sw = 1; j = 2; }
else
{
 sw = 0;
 j = 3;
}

 begin ～ end を 使います。

if　sw = 1 then
begin
 sw := 1; j := 2;
end // 後ろに elseが ある時は ;を
else // 付けては いけない。
begin
 sw := 0:
 j := 3;
end;

if ～ else
文

if(関係式)　True時の実行文
else　　　　　False時の実行分

if(sw == 1)
 sw = 0;
else
 sw = 1;

if 関係式 then True時の実行分
else False時の実行分

if sw = 1 then
 sw := 0 // 後ろに elseが ある時は
else // ;を 付けてはいけない
 sw := 1;

項目 C、C++ Delphi

for文

for(i=0; i<10; i++)
{ ～ }

for(i=10; i>0; i--)
{ ～ }

for i:=0 to 9 do
begin ～ end;

for i:=10 downto 1 do
begin ～ end;

増分 減分を 2とか 3の指定は 出来ません

while文
break;

continue;

 while(ループする条件式)
 {
 // 処理A
 if(ループ中断の条件式) break;
 // 処理B
　　if(先頭に戻る条件式) continue;
 // 処理C
 }

while ループする条件式 do
begin
 // 処理A
 if ループ中断の条件式 then break;
 // 処理B
　　if 先頭に戻る条件式 then continue;
 // 処理C
end;

大文字と
小文字の

区別

 C 及び C++ は、大文字と小文字を
 別の文字として区別します。
 Abc と abc は、異なる変数に
なります。

 Delphiは、変数名などの 大文字と小文字
 の違いを　区別しません。
　Abc と abc は、同じ変数になります。　

項目 C、C++ Delphi

switch
case

default

case of
else

switch(式)
{
 case 1: a = 100; // 式=1 の時
 break; // 中断
 case 2: a = 200; // 式=2 の時
 b = 500;
 break; // 中断
 default:　　　　　// 式が それ以外
 a = 50; // の場合
 b = 60;
}

case 式 of
 1: a := 100; // 式=1 の時
 2: begin //文が２つ以上ある場合
 a := 200; // 式=2 の時
 b := 500;
 end
 else begin　　　 // 式が それ以外
 a := 50; // の場合
 b := 60;
 end;
end;
break; が いらない代わりに 文が２つ以上
ある場合は、begin ～ end; で挟む事。

コメントの
扱い

 /* ～ */ で、囲まれた範囲
 // から行末まで

 { ～ } で、囲まれた範囲
 (* ～ *)　で、囲まれた範囲
 // から行末まで

項目 C、C++ Delphi

変数の
宣言場所

 関数内の先頭で宣言する場合
void __fastcall TForm1::test1(void)
{
 AnsiString tx;　// 関数内でのみ
 ～～～ // 有効な変数
}
呼び出された時、Stack上に変数エリアを
確保される Auto変数になります。
関数から呼び出し元に戻る時、変数エリ
アは、廃棄されます。

処理関数を含むクラス内で変数を 宣言す
る場合は、private: 内に宣言すると、外
からアクセス出来ない変数になります。
public: 内に宣言すると、外からアクセ
ス出来る変数になります。
クラスが、存在する間は、スタティック
に値を保持します。

 関数内の先頭で宣言する場合
procedure TForm1.test1;
var　　// 変数宣言する時は Varが必要　
 tx: String;　//関数内でのみ有効な変数
begin
end;
呼び出された時、Stack上に変数エリアを
確保される Auto変数になります。
関数から呼び出し元に戻る時、変数エリア
は、廃棄されます。

処理関数を含むクラス内で 変数を宣言する
場合は、private: 内に宣言すると、外から
アクセス出来ない変数になります。
public: 内に宣言すると、外からアクセス
出来る変数になります。
クラスが、存在する間は、スタティックに
値を保持します。

項目 C、C++ Delphi

算術演算子

加算：＋、減算：－、乗算：*、除算：/
整数型のあまり：%
C特有のコーディング量を減らす演算子
 a += b; 　//　a = a + b;
 a -= b; 　//　a = a - b;
 a *= b; 　//　a = a * b;
 a /= b; 　//　a = a / b;
 +1を 行う演算子 a++; または ++a;
 -1を 行う演算子 a--; または --a;

加算：＋、減算：－、乗算：*、
整数型の除算：DIV、実数型の徐算：/
整数型の余り：MOD

コーディング量を減らす演算子は、無いの
ですが、+1 を 行う処理で inc(a);
-1 を 行う処理で dec(a); が
あります。 これらは、アセンブラでいう
ところの inc命令、dec命令に置き換えられ
るそうです。　速度面では、多少メリット
が、あるかもしれません。　

論理関係
演算子
&& ||
AND OR

if文内の関係演算子で、例えば
if((a > b) && (c > d))の 場合
a は b より大きく、かつ c は d より
大きい場合 if文は True に なります。

if((a > b) || (c > d))の場合　
aは bより大、 cは dより大の 片方を満
たせば if文は True に なります。

 左の関係を Delphiで 表すと
if (a > b) AND (c > d) then の場合
a は b より大きく、かつ c は d より
大きい場合 if文は True に なります。

if (a > b) OR (c > d) then の場合
aは bより大、 cは dより大の 片方を満た
せば if文は True に なります。

項目 C、C++ Delphi

ビット
演算子

|、&、~、^
AND、OR、
NOT、XOR

その前に 16進数の定数の表示例：0x40
と表します。
変数上の特定のビットを操作する時、

b3を 1 にする場合
 b = b | 0x08;

b3を 0 にする場合
 b = b & 0xF7;

変数の ビット反転を行う
 b = ~b;

2つの値の 食い違ったビットを 1にする
c = a ^ b;

その前に 16進数の定数の表示例：$40
と表します。
変数上の特定のビットを操作する時、

b3を 1 にする場合
 b := b OR $08;

b3を 0 にする場合
 b := b AND $F7;

変数の ビット反転を行う
 b := NOT b;

2つの値の 食い違ったビットを 1にする
c := a XOR b;

ビットシフト
演算子
<<、>>

SHL、SHR

左シフトの例： b = b << 2;
右シフトの例： b = b >> 3;

左シフトの例： b := b SHL 2;
右シフトの例： b := b SHR 3;

項目 C、C++ Delphi

ポインター
と参照渡し

 C++になってから、参照渡しが、出来る
ようになりました。 Cで、ポインターを
使いこなしている方は、C++になっても
ポインターを 使っている方が 多い気が
します。

int buf[100], j;
int *ptr;

　ptr = &buf;
 j = *ptr; //バッファの先頭データが
 // j に 入る
 ptr++; // 結果 2番目のデータを
 // 指している
----- 参照渡し　-----------------
short num = 50; // 変数定義
short & refnum = num; // 参照変数の
 // 定義
refnum = 80; // num=80を、
　 // 行ったのと同じになる

Delphiでは、最初から参照渡しを使って
いたので、私は、Delphiでは、
あまりポインターは 使いません。
var
 buf: array [0..99] of Integer;
 j: Integer;
 ptr: ^Integer;
begin
 ptr := @buf;
 j := ptr^;
 inc(ptr);
　　～～～
end;
Delphiの参照渡し／同じ例が作れないので
手続きの引数に参照渡しを行う例を示しま
す。（ この使い方が 多いと思います ）
procedure MyProc(var x: Integer);
 x := x + 10; // 呼び出し元の 変数に
　　　　　　　　// +10が 反映される

