
Delphi、Lazarusにて 強引な手法で シリアル通信を行う

　前回までの動画は、Windows10の 環境上で　

Delphi 10.4、Lazarusに関する比較的　初心者

向けの内容でした。　前回で Delphi 10.4、

Lazarusの動画は 終わろうと思っていました。

　が、 その前に　どうしても　一つ実現したいと

思う事が ありました。 それは、Delphi、Lazarus

にて シリアル通信を 行う事です。　何故かとい

うと、　この YouTubeチャンネルでは、組み込み

マイコンを中心とする電子工作が　メインテーマ

になっています。　で、特にローエンド、ミドルレ

ンジのマイコンと、パソコン間で　データ通信を

行うとすれば、シリアル通信が、定番です。

　しかし、Delphi 10.4、Lazarusに関しては、シリ

アル通信の機能をサポートするライブラリは、

標準では　付いていません。　初心者には、難し

い内容になりますが、よろしければ 見て下さい。

　ということで、どうにかして、Windows10の 環境

上の　Delphi 10.4、Lazarusにて、シリアル通信

を行える環境を用意出来ないかと、いろいろ検

討しました。

　昔、1999年頃 Delphi5 にて、使用出来るRS

232C通信コンポーネントを作られたN.Nさんと

いう方がおられて、CQ出版社の トランジスタ技

術か Interface どちらか忘れましたが、付録の

CD-ROMに、シリアル通信を含む FA用途の　ビ

ジュアルコンポーネントのソース等を公開してお

られました。

　私は WinXPの古いノートPCを、今もスタンドア

ロンで使用していますが、このPCに、上記シリア

ル通信コンポーネントを含めたDelphi5を　インス

トールしています。　動画で　Delphi5の rs232c

コンポーネントを　 ちょっと お見せします。

Delphi、Lazarusにて どのように シリアル通信を実現するか

　N.Nさんが 作られた Delphi5用の rs232cコン

ポーネントですが、どのように　Delphi 10.4、

Lazarusで、使用できるか、３通りの方法を

考えました。

①　まず、一番正当なやり方で、rs232cコンポ

　　ーネントのソースを Delphi 10.4に持って行

　　き、ビジュアルコンポーネントとして登録す

　　る事が、考えられます。　実際に やってみ

　　ましたが、コンポーネント用の基底クラスの

　　構造が、全面的に変わっているようで、互

　　換性が、無いです。　エラーが、滝のように

　　出ます。　移植は、無理と判断しました。

②　Delphi5のコンポーネント部分を DLL化して

　　Delphi 10.4から DLL呼び出しして、シリアル

　　通信は、出来ないか。？

　これも、やる前から無理だろうな。 という予測

がありました。 DLLは、実行時に連結するダイ

ナミックライブラリです。　中身は、通常 フック

関数等のAPI関数等を呼び出す用途で使用さ

れます。 DLLの中身の関数は基本 静的な関

数です。　コンポーネントライブラリは、動的に

Objectを生成して動かすものですし、特に

rs232cコンポーネントは、内部で 送信、受信の

ループ処理に マルチスレッドを使用していま

す。 DLLの中でマルチスレッドの処理を行うの

は、無理と判断しました。

③　Delphi5側で、rs232cコンポーネントを アク

　　セスするプログラムを作成し、プロセス間通

　　信で、Delphi 10.4のアプリと データの やり

　　取りを行わせるというやり方です。　結果か

　　ら いうと　この方法は何とか成功しました。

③の プロセス間通信とは、どのようなやり方なのか？

③　プロセス間通信とは、２つのプロセス間

　　（ プロセスとは、実行プログラムが、動いて

　　 いる状態を示す。）で、通信を行う事です。

　　具体的な方法として、パイプ、セマフォ、

　　共有メモリ、ソケット通信が　あります。

　　今回は、アクセスが簡単な 共有メモリで

　　プロセス間通信を実現しました。

　右の図で、上にある楕円で、左側が Delphi

10.4 ホストプロセスと書いてますが、RS-232C

を　使ってマイコンと通信したい というアプリで

す。 Lazarusでも 共有メモリをアクセスできまし

たので、Lazarusでも同様の事が出来ます。

　但し、２つのホストプロセスで 同時に 共有メ

モリは、アクセス出来ません。　

パソコン内

OR

共有メモリ

Delphi 10.4
ホストプロセス

Lazarus
ホストプロセス

Delphi5で生成
共有メモリ <-> RS232C

変換プロセス

マイコン

RS-232C

共有メモリ
アクセス

パソコン内

OR

共有メモリ

Delphi 10.4
ホストプロセス

Lazarus
ホストプロセス

Delphi5で生成
共有メモリ <-> RS232C

変換プロセス

マイコン

RS-232C

共有メモリ
アクセス

　前ページの続きですが、ホストプロセスは、

Delphi 10.4 か、Lazarus のどちらか片方を 共有

メモリに接続する事になります。　右の図では

Delphi 10.4側の ホストプロセスを接続したイメー

ジで、描いてます。

　共有メモリの下の Delphi5で作成した共有メモ

リ、RS232C 変換プロセスですが、共有メモリ上

のデータと RS232Cシリアル通信の　中継動作を

行っています。　共有メモリの生成は、Delphi5で

作成した変換プロセスにて、起動時に生成してい

ます。　よって 最初に 変換プロセスを起動する

必要が あります。 そして、ホストプロセスが

動作中は、変換プロセスは、メモリ上に常駐して

おく必要が あります。 通常は、フォームを

最小化しておけば、いいです。

　それと、変換プロセスには、いくつかのデバッグ

機能を付けています。　順次説明して行きます。

CmemComm.exe

Test_Comm.exeTest_Comm.exe

共有メモリ内の データマップ

　まず、共有メモリ内で、どのようにデータを　

割り付けてあるかを　説明します。 大きく ３つ

に 分かれます。

①　シリアル通信コントロールパラメータ

②　送信用 データ転送ブロック

③　受信用 データ転送ブロック

の３つです。　②と ③は、転送方向は逆ですが

構造的には 同じものです。　②と ③の転送用

バッファサイズは、260byteですが、最大 １ブ

ロック　256byteとして扱って下さい。

１ブロックとは、連続して転送する １本の電文

サイズの事です。　それより大きいデータは、

いくつかの複数ブロックに分けて転送して下さ

い。

シリアル通信コントロール
パラメータ (12byte)

送信用 (264byte)
データ転送ブロック

受信用 (264byte)
データ転送ブロック

共有メモリ
先頭アドレス

①　シリアル通信コントロールパラメータは、

RS232Cオープン時必要となる、ポート番号、

ボーレイト、データ長、パリテイ 等です。
　

①、②、③に共通して存在する hs というフラグ

が、あります。　これは、ホストプロセスと、変換

プロセス間で、タイミング調停を　行うもので、

ハンドシェークの略です。

共有メモリ内の 詳細 レコード宣言　1

TCMEM_SERIAL_PM = record // シリアル通信コントロールパラメータ

 hs: Byte; // 書き込み完了時=1／読み出し完了時=0

 pad_1: BYTE; // 予備_1

 dlen: BYTE; // データ長 7 or 8

 pbit: BYTE; // パリティビット 0=Non, 1=Odd, 2=Even

 // STOP bit=1 固定

 bps: Integer; // 通信速度 b/s

 port: BYTE; // ComPort番号： 1 ～ 20

 opcl: BYTE; // シリアルポート Open=1 , Close=0

 dtr: BYTE; // 0 = OFF , 1 = ON

 rts: BYTE; // 0 = OFF , 1 = ON

end;

共有メモリ内の 詳細 レコード宣言　2

TCMEM_BLOCK = record // データ転送ブロック

 hs: Byte; // 書き込み完了時=1／読み出し完了時=0

 pad: Byte; // 予備

 cnt: WORD; // データByte数

 buf: array [0..259] of Byte; // Max 260Byteバッファ

end;

TCMEM_TABLE = record // 共有メモリテーブル

 ctrl: TCMEM_SERIAL_PM; // シリアル通信コントロールパラメータ

 send: TCMEM_BLOCK; // データ送信側 転送ブロック

 recv: TCMEM_BLOCK; // データ受信側 転送ブロック

end;

 PCMEM_TABLE = ^TCMEM_TABLE; // 共有メモリのポインタ

var

 Cmem: PCMEM_TABLE; // 共有メモリのポインタ変数

Const

 cmem_name = 'TRANS_BUF'; // 共有メモリ名

この　共有メモリ名は、ファイル名みたいな物で、

ホストプロセス、変換プロセスで、同じ名前の 共有メモリ名を 指定します。

今回の場合、変換プロセス側で、最初に　共有メモリを生成します。

使用する API関数：　CreateFileMapping と　MapViewOfFile を　使用します。

ホストプロセス側で使用する API関数：

　OpenFileMapping と　MapViewOfFile を　使用します。

共有メモリ内を　読み書きするには、PCMEM_TABLE型の Cmem ポインタを使用します。

例）　 Cmem.recv.hs := 1;

　　　　 // 共有メモリ内の recvブロックの ハンドシェークフラグを

 // 書き込み完了通知で 1 に する。

終了する時の　API関数は　CloseHandle を、使います。

今回も、Test_Comm.exe の ソースを 公開しますので、

その中の CSCmodule.pas に 共有メモリアクセスの関数が、入ってます。　

ホストプロセスと 変換プロセス間の　ハンドシェーク

　送信用 データ転送ブロックと、受信用 データ

転送ブロックが、独立しているので、各転送ブ

ロックの 転送方向は一方通行です。

送信用データ転送ブロックのデータの流れは

ホストプロセス -> 共有メモリ -> 変換プロセス

-> RS232C/Sendライン に　なります。

受信用 データ転送ブロックのデータの流れは

RS232C/Recvライン -> 変換プロセス -> 共有

メモリ -> ホストプロセス に　なります。

で、ハンドシェークですが、データの送り元が、

hs = 0 である事を確認して、共有メモリにデー

タを書き込みます。　書き込み終わった時点で

hs = 1　に します。

データの受け側が、hs = 1 である事を 確認して

データを読み出します。　読み出し終わったら

hs = 0 に　します。　この動作を繰り返します。

　例えば、書き込み時に hs = 1 の場合は、まだ

受け側が、前のデータを 読み出して無い事にな

るので、hs = 0 の 待ち状態が、一時的に 発生し

ます。 相手がダウンした場合は、ｈｓの条件待ち

で、無限ループになる可能性もあります。

　本来であれば、待ちループの時間監視や、エラー処

理のルールを決めておかなければなりませんが、今回

は、そこまで シビアに作り込んで いません。

　という事で、今回の プログラムは、ベータ版という事

にしておきます。

データ書き込み、読み出し　Hs信号の 変更タイミング （ ホストプロセスから 変換プロセスへ転送する場合 ）

データ無しデータ無し

今回、動作確認に使用したプログラムの名前ですが

ホストプロセス側：　Test_Comm.exe

変換プロセス側：　CmemComm.exe

です。　最初は、右上の WindowsXPの入った　いつもの

ノートPC上で Delphi5 を使って、開発を 行いました。

注意：　ComPortの ComPort番号、ボーレイト、パリテイ、データ

長は、ポートのオープン前に　設定して下さい。オープン後は 値

を 変更しないで下さい。

DTR信号、RTS信号は オープン後でも、変更可能です。

ホストプロセス側： データ書き込み

共有メモリHsフラグ：

変換プロセス側：

ホスト側が ONするホスト側が OFF確認

変換側が ON確認

データ読み出し

変換側が OFFする

データ有り

Time

変換側 CmemComm.exeの フォーム画面

送信側データ ダンプエリア

受信側データ ダンプエリア

通常は、送受信共に
ダンプは行いません。

チェックを付けると
ダンプを行います。

Local Echo Backは、ホストから
受けたデータを、RS232Cに

出力せずに、受信側共有メモリ
に書き込みます。

結果として 共有メモリ経由の
エコーバックになります。

Clearは、ダンプ表示のメモ帳を両方消します。
Save SD は、送信側のダンプ表示をファイル出力
します。　Save RDは、受信側ファイル出力です。

Test..1、Test.2、Test.3 は、このプログラムの
シリアル出力、入力を 確認するデバッグ用途の
機能です。 （ 通常このボタンは、disable状態です ）

通常 使用する時は、２つのチェックボックスに　チェックを入れずに
フォームを最小化して、使用して下さい。

ホスト側 Test_Comm.exeの フォーム画面

RS232Cのパラ
メータは、ポート
番号と ボーレイト
の２つが、設定出
来ます。　その他
のパラメータは　
語長： 8bit
パリテイ：無し
DTR： ON
RTS:： ON
の 固定です。
[Open] ボタンで
RS232Cを オープ
ンします。
灰色の丸が緑に
変わります。
[Close]ボタンで
RS232Cを クロー
ズします。 丸が
灰色に戻ります。

Loop Test内の [Start]ボタンクリックで、行番号と
数字、英字大文字、英字小文字の１行を 100回
送信します。　シリアルループ状態であれば、下の
緑のメモ帳にも、同じ文字列が表示されます。

送信側：

受信側：

新規Projectに CSCmoduleを 入れるには

　CSCmoduleとは、共有メモリ経由で、RS232Cを
アクセスする関数群を　クラスにした物です。
メインフォーム側では、　CSCmd.メンバー関数; の
記述で 呼び出します。 下記に例を示します。

//　 シリアル通信オープン
　　CSCmd.rsopen(pn, bps);

// シリアル通信 文字列送信
 CSCmd.send_string(tx);

// シリアル通信 文字列受信
 txt := CSCmd.recv_string;

// シリアル通信クローズ
　　CSCmd.rsclose;

　で、このクラスを使うには、CSCmoduleを　新規プロ
ジェクトに 追加する必要があります。

　まず、新規プロジェクトのフォルダに、ファイルを　２本
コピーします。　Delphi 10.4の プロジェクトの場合は　
CSCmodule.pas と　CSCmodule.dfm の２本です。

Lazarusの　場合は
CSCmodule.pas と　CSCmodule.lfm の２本です。

　CSCmdの　関数を使うには、コピーした２本のファイル
を、IDEの プロジェクトに認識させる作業が　必要にな
ります。　それと メインの ソースファイルの
implementationuses 部の下に
uses
 CSCmodule; を、記述する必要があります。
それと、CSCmodule.pas の　implementationuses 部の
下に　
uses
 メインフォームの ユニット名；　を、記述する必要
があります。
　次ページから、画像を使って説明します。

Delphiで 新規Projectに CSCmoduleを 入れる手順

①　新規プロジェクトのフォルダに、ファイルを　２本
　　コピーします。　コピーするファイルは、
　 CSCmodule.pas と　CSCmodule.dfm の２本です。

②　次に Delphiのメインメニューにて、プロジェクト ->
　　プロジェクトに追加を 選択します。

③　CSCmodule.pasを 選択し開くをクリックします。
　　（ CSCmodule.dfmは 一緒に付いてきます。)

④　CSCmodule.pasの ソースが 表示されます。

④　Unit1のコード表示に切り替えて、 {$R *.dfm} の
　　下に　uses 改行 CSCmodule; を 入力します。

この２行を
入力します。

⑤　Unit1のフォームに、ボタンを２個貼り付け、キャプ
　　ションを、RSopen と　RSclose に　します。

⑥　今回の例では、CSCmoduleの RS232Cの オープン
　　と　クローズの 関数呼び出しを　入れてみました。

キャプション変更後に
ボタンを ダブルクリックして

ボタンクリックのイベント
ハンドラを 用意します。

これで、Openと Closeの
機能は、使えます。

⑦　これで、Delphi 10.4 の　新規プロジェクトに
　　CSCmoduleの 追加は出来ました。

　　次は、Lazarus ですが、モジュールの追加は 結果
　　からいうと、うまく 出来ませんでした。

①　ラザロの 新規プロジェクトに
　　CSCmoduleの 追加

　メインメニューのプロジェクトに
プロジェクトに追加は、無いので
ツール の Delphi変換の
Delphi ﾕﾆｯﾄを　Lazarus ﾕﾆｯﾄへ
変換 を　使用する事に
なります。

②　ファイルを開くダイアログにて、CSCmodule.pasを
　　開きます。

③　CSCmodule.pas の　ソースが、表示されます。
　　うまく取り込めたかな。　と、思ったら
　　違ってました。

④　２つのソースに　uses節を　追加してビルドしたら
　　以下のようなエラーが、出ました。

ソースエディタ上に、ソースファイルは、取り込めたも
のの、CSCmoduleは、プロジェクト内の　ソースとして
IDEが、認識してないようです。　ここから先、全然
進む事が 出来ませんでした。　プログラム的に、何と
も、中途半端な取り込み機能ですよね。　

その他、Delphi、Lazarusを 扱って分かった事

　以前、Lazarusの 64bit版を、インストールして、
Integerのサイズを見たら 4byteだったので、生成され
るアプリは　32bitと判断します。　と、書いてましたが
Windows 10 32bitの ノートPCで 実行したら この
プログラムは、実行できません。　
と、出たので　64bitの アプリの ようです。
　Integerのサイズ 4byteは、過去の資産の データの
互換性を取る処置なのかもしれません。

　という事で、Lazarus 64bit版で 生成されるアプリは
64bitだったという事です。　以前　間違った事を書い
てしまい申し訳ありませんでした。

　　　もうひとつ、生成した アプリの ファイル
　　　サイズに　かなり差が、ある事にも 驚きました。
　今回、作成したテストプログラム Test_Comm.exe
のファイルサイズですが、

Delphi 5 で生成した Test_Comm.exe は
　　409,088 byte　でした。

Delphi 10.4 で生成した Test_Comm.exe は
　　2,555,392 byte　でした。

Lazarus で生成した Test_Comm.exe は
　　20,525,824 byte　でした。

　何で、こんなに差が　あるのか。？
Delphi 5　の実行モジュールが　小さいのは、昔の
Windows環境に合わせて作られているからと、思いま
す。　今の、Windows 10 は　昔の Windowsに 比べ
 1 Gbyteを　超える肥大化したサイズですし、Delphi
10.4 の　2,555,392 byte は　仕方ないかな。　とも
思います。　が、Lazarus の 20,525,824 byte は、
何なのでしょうか。？　最初 Linux環境で開発されて
いる事が、影響しているのでしょうか。？

