

R8C/Mシリーズの ZIPファイルについて

R8CM1_ハード資料.ZIP

R8C_開発環境等

R8C用C、C++コンパイラ_アセンブラ_リンカ_HEW

　nc30v600r00_ev.exe ：　R8Cマイコン用統合開発環境インストーラ
　　　　　　　　　　　　　　　　（ C,C++コンパイラ、アセンブラ、リンカを含む ）
　FlashSta.exe　：　 R8Cマイコン用書き込みソフト
　　　　　　　（ 対応OS：　WinXP ～ Win10 は 家の環境で確認してます。 ）
　　　　　　　

サンプルコードの資料（ 主にメーカーの PDFファイル ）

　R8CM1_ハード資料　（ R8CMシリーズのデータシート PDFファイル ）

　R8C用_C C++コンパイラユーザーズマニュアル.pdf
　R8C用_アセンブラ_リンカ資料.pdf
　その他、多数の資料

　　　　　　　　　　　　これらの資料は、ルネサスのホームページで公開されて
　　　　　　　　　　　　いる評価版ソフト及び、ルネサスのホームページで公開
されている資料です。　とくに評価版ソフトが、どこにあるのか分かりにくいの
で、私がダウンロードした物を 付けました。　その他　個人ユーザさんの資
料も 一部含まれています。 今回の、R8Cマイコン開発に関わる圧縮ファイ
ルは、2023年 8月末までの　期間限定と　させて頂きます。

マイコンよもやま話について

　何を　書こうかなと思っていたのですが...。
　今回、R8Cマイコンで、プログラムを作成する
に当たって　ルネサスの 統合開発環境HEWで
扱える言語は C、C++、アセンブラです。

　私は、ルネサスのマイコンで C++を使った事
は ないです。　私は　Cと　アセンブラを組み合
わせてプログラムを作ります。 Cと　アセンブラ
を組み合わせて開発するのは、言語の適材適
所的なところが あるからです。

　アセンブラは、マイコンが持っている全ての命
令が使えます。　コンパイラしかやってない方
は、勘違いされるのですが、アセンブラは、昔
の古い機械語的なコンパイラと　考えておられ
る方がいます。　アセンブラは、コンパイラでは
ありません。　

　よってアセンブラを理解するために、アセンブラ
の勉強をするというのは、全くのナンセンスなの
です。　どういうことかというと、特定の CPUのア
センブラを理解するのであれば、そのCPUの
アーキテクチャ（設計思想）を理解する必要があ
るのです。　CPUのレジスタ構成、命令セットや
アドレッシングモードの特徴を理解する事です。

　言い方を変えると、アセンブラは　CPUが、変わ
ると全く互換性が　ありません。　よって、アセン
ブラは、Cの様に　移植のため他の CPUに　ソー
スを持って行く等の移植生が、非常に悪いです。
だから、C言語が出来たといえます。

　でも C言語の舞台裏を話すと　移植性を損な
わないように、どのCPUにも有るような、汎用的
な命令しか使用しないため、そのCPUの持つ性
能を　フルに引き出す事は出来ません。

　例えば、C言語の 苦手な記述として、割り込み
処理があります。　割り込み処理は、初期化時に
該当する割り込みのベクトルテーブルに、割り込
み処理の　エントリーアドレスを記述する必要が
あります。

　そして割り込みが発生した時、割り込み処理内
で最初に　使用するレジスタを　全てスタックに積
み上げる PUSH命令を実行します。

　割り込み処理が終わったら、スタックに退避し
たレジスタ値を　POP命令で 戻します。
　そして割り込み処理用の リターン命令を使用し
ます。　普通のサブルーチンリターン命令は使用
出来ません。　暴走します。

　アセンブラを経験した方であれば、何故暴走す
るか容易に理解できると思いますが、C、C++し
か　やった事が無い人にとっては、イメージが
掴みにくいと思います。

　それと、C、C++で 組み込み用途のプログラム
開発にて、ルネサスの RXマイコンを使う場合は
汎用レジスタを　16本持つ 32bit マイコンです。

　C言語で割り込み処理を作成する場合は、割り
込み処理スケルトン側で、どのレジスタを使用す
るのか分からないため、15本全てをスタックメモ
リ上に積み上げます。　１本少ないと思われるで
しょうが、残り１本は、スタックを管理するスタック
ポインタです。

　当然、割り込み処理から抜ける前に、スタック
上に積み上げた15本分のレジスタの保存データ
を レジスタに POP命令で戻す必要があります。

　アセンブラで割り込み処理を記述すれば、自分
で使用するレジスタは、把握できるでしょうから、
使用するレジスタだけ、スタックに積み上げる事
が、出来ます。　積み上げる数が少ない分、割り
込みの応答速度が、早くなります。

　ちょっと話が変わりますが、遥か昔 8bitのパソ
コンに　使用された Z80というCPUは、ご存じで
しょうか。　若い人は 名前は聞いたこと有るけど
どのような CPUなのかは知らない。　という方が
多いのではないかと思います。　

　このCPUは、Intelの 世界初の コンピュータらし
いマイコンとして登場した　i8080、及び i8085と
マシン語レベルで、上位互換性があるCPUです。

　Intel は、i8080の前に 世界初のマイクロプロ
セッサ 4bitの i4004 と その 8bit版ともいえる
i8008が、あります。　この２つは、DIP16ピンで、
コンピュータというよりは、コントローラの一部で、
性能もいまいちだったようです。　
　i8080で、劇的に　コンピュータらしくなったよう
です。 i8080は　DIP 40ピンで、電源が +5V、
+12V、-9Vの３電源が必要でした。　それを +5V
単一電源で動くようにしたのが、i8085 です。 　その後、ザイログという半導体メーカが、マシン

語レベルで i8080上位互換の Z80を出しました。

　前のページで、右のレジスタ一覧の話まで
行き付けませんでしたが、Z80のレジスタ一覧
です。　で、左側の赤い線で囲った部分が、
i8080が、持っているレジスタです。　赤い枠線
の外側にあるレジスタは、i8080は、持っていま
せん。　よって、Z80のレジスタは、i8080の 倍
に 増えています。

　i8080のレジスタは、Fのフラグレジスタは、横
に置いといて、 A、BC、DE、HL レジスタが あ
りますが、Aが　アキュムレータ、BCレジスタペ
アが、カウンタ、DEレジスタペアは メモリのアド
レス指定として使用できる。と書いてあります
が機能が少ないようです。　HLレジスタペアが
ポインタとして優れているようです。

　更に　Z80は、インデックスレジスタ IX、IYも
もっており、ポインタを多数持っています。
そして、A'、B'C'、D'E'、H'L' の裏レジスタセット
も持っています。　表レジスタセットと２つ同時

には、使えませんが、１命令で 表と裏のレジスタ
セットを瞬時に切り替える事が出来ます。
これは、ある事において非常に便利に使えます。

　１命令で 表と裏のレジスタセットを瞬時に切り
替える事が出来ます。　これは、ある事において
非常に便利に使えます。　と書きましたが、ある
事とは　何か分かりますか。？

　３ページ前に、割り込み処理に入った直後に、
CPUの レジスタを、全てスタックに積み上げて保
存して、割り込み処理が終わったら、リターンす
る直前に　積み上げたレジスタの値を　レジスタ
に戻す処理を行ってリターンしています。
　このレジスタセットの退避と復帰に、スタックに
データを積み上げるのではなくて、 表と 裏のレ
ジスタセットが　あるならば、１命令で表と　裏の
レジスタを切り替えた方が、ずっと高速にレジス
タを退避する事が出来ます。　但し、この方法で
多重割り込みは、出来ません。　よって応答速度
をあまり気にしない割り込みは、スタックを使用し
て、高速応答が必要な割り込み処理にのみ
レジスタの表裏切り替えを使うと、効率のいい

　

　制御系のシステムを　構築出来ます。
実は、Z80の表裏レジスタのような ハード構成は
R8Cマイコンも持っているのです。

R0H、R0L、R1H、R1L、R2、R3、A0、A1、FB　レ
ジスタは、裏レジスタが　あります。　R8Cも
１命令で、レジスタセットを瞬時に切り替えられる
ので、高速な割り込み応答が可能になります。

　ローエンドマイコンにとっては、このようなレジ
スタセットの 表裏切り替えが出来ると、マイコ
ンの性能を　フルに発揮させる事が出来ると思
います。　

　まあ、その前に割り込み処理が、どのような
ものなのかをしっかり理解しておく必要があり
ます。　制御系のプログラムであれば、割り込
みは避けて通れないと思います。

　そして割り込み処理は、CPUの割り込みシー
ケンス等のハードに近い部分も理解しておく必
要があります。　そしてハードを理解するという
事は、アセンブラを理解する事にもつながって
きます。　ローエンドマイコンで、最高のパフォ
ーマンスを実現するには、アセンブラも必須に
なると思います。
　但し、アセンブラは、万能ではありません。
正直 作りにくい用途もあります。

　例えば、複雑な演算処理は、C言語で行うべき
です。 R8Cは 整数演算は結構速いと思います。

　浮動小数点は、私は　R8Cで 使った事がありま
せん。 ソフトで演算を行うので、整数演算に比べ
数十倍時間が かかります。　そして演算ライブラ
リもリンクするので、メモリも圧迫します。

　特にリアルタイム処理内で、浮動小数点演算を
行うのであれば、FPU（ 浮動小数点演算ユニット
 ）を 持ってないと 処理が間に合わない恐れが
あります。　ルネサスの場合は、RX600シリーズ
に、FPUが 実装されてます。

　あと、アセンブラで適さないと思われるのは
複雑な判定処理です。　これは、C言語で if 文、
switch ～ case 文で　ループ処理は、for 文、
while 文、そして　continue、break などで表す方
が 　ロジックを　簡潔に表現できるでしょう。

