
FlashSta.exe の書き込み速度の高速化

　正確には、パソコン　R8Cマイコン間の通信

速度の高速化となります。　直接的に プログラ

ム書き込み用フラッシュROMの書き込み速度

が遅い訳ではなく、パソコン　R8Cマイコン間の

通信速度が、デフォルトで 9600 bps で　データ

通信速度が 遅いのです。　たまたま　R8C前の

M16C時代の FlashSta.exeの 説明書を見つけ

ました。　その説明書を見るとボーレイトの設

定ダイアログが あるので、探してみたらありま

した。　私は、57600bpsで試してみましたが、

問題なく書き込めました。　非常に速い通信速

度で行うと、エラー　あるいは動作が不安定に

なる恐れが あるらしいです。 書き込みデータ

は 101 bz_sound.motファイル 29,642byteです。

 9600bps：　76秒です。

57600bps：　16秒です。　4.75倍 速いです。

　57600bps / 9600bps は、6 になるのに4.75倍

なんだと思われる方もいるかもしれません。

　プログラム書き込み時、R8Cマイコンが　やる

仕事は、通信だけではなく、受信したデータをプ

ログラムフラッシュに 書き込む仕事も行います。

　このプログラムフラッシュにデータを書き込む際

は、RAM書き込みのように単純ではなく

　一連の書き込みシーケンスがあると思います。

その関係で、書き込みには、ちょっと手間が

かかる（ 時間が かかる ）のです。

　通信速度は、最大　115200bpsですが、2番目

の 57600bpsが、安全と思います。

　では、設定操作の動画を、お見せします。

　先ほどの、ボーレイト設定のダイアログです

が、下のパラメータは、Program_intervals(ms)

と、書いてあります。　これは、プログラムフラッ

シュに書き込む、タイミング調整と思われます

ので、下手に変更すると　プログラムフラッシュ

の 書き込み不良の原因に なりかねません。

という事で、変更しないで下さい。　

６４Kbyteを 越えるメモリのアクセス

　この件については、前々から気になっては　いたのです

が、以前の 105の動画で、インターネットから画像コピー

した R8CマイコンのCPUコアのレジスタ構成です。　何故

か R0H,R0L ～ R3 の四角の横の長さに比べ、A0,A1,FB

の 横の長さが　長く表示してあります。 PCと INTB 以外

は、16 bit のはずです。　この図は、おかしいぞ。？

という事で、R8Cマイコンの ハードウェア

データシートの レジスタ構成図と比べる

と　明らかに　レジスタ長の 図形上の表

示が、A0、A1、FB、SB の長さが、間違い

です。　繰り返しますが、PCと INTB 以外

は 16bit です。

　という事で、左の図は 間違いあるいは

紛らわしい表示のR8Cマイコンのレジスタ

表示の図となります。

　この図を　よく確認せずに、使用した私

も　間違った事を した事になります。

申し訳ありませんでした。

　この件にてレジスタ長の　再確認等を、

行った関係で、左側レジスタセットは

全て　16 bit として 再確認しましたが

　ここで、A0、A1に関して　新たな発見が

ありました。

ルネサスのハードウェアデータシートのレジスタ構成図

A1

 R0レジスタは、R2レジスタを 上位WORDとして連結して、32 bit レジスタと

して扱う事が出来ます。　R3 レジスタと R1レジスタも　連結して 32 bit レ

ジスタとして扱う事が出来ます。　元の図には書いて無かったので、私が　

A0 レジスタの左に 赤の点線で　A1 レジスタを 連結する 図を 追加しまし

た。　これにより、A1：A0の　32 bitの　ポインタとして扱えます。

図では、示されて無かっ

たのですが、単独の

A0、A1 ポインタレジスタ

の説明欄にて、連結し

て 32 bit のポインタとし

て使える事が、目立たな

い文章で　書いてありま

した。

　よって 32bit のポイン

タとして使えるのは、間

違いないと思います。

　但し、PC（ プログラム

カウンタ ）が、20bit な

ので、レジスタ　メモリ間

のアドレスバスラインは

あったとしても　20bit 以

内と思います。

　

具体的に　64Kbyteを超えるアドレス空間をどのようにアクセスするのか。？

　PCは、20bitで　64Kbyteを超えるメモリ領域

にあるサブルーチンを　呼びだす事は可能で

すが、64Kbyteを超えるメモリ領域に（ プログラ

ム フラッシュ ）エリアに、プログラムを書き込む

時どうしているのだろうか。？　プログラムを書

き込む時は、書き込むプログラムは、データと

して扱うので、16bit を 超えるポインタレジスタ

が ないと　書き込めないはず。 　と、前から不

思議に思っていました。　謎が解けました。

　A1 A0 の ポインタレジスタペアを　扱うのは　

アセンブラで プログラムを作成するしか手段が

無いと思います。　最初 MOV命令で、オペラン

ドを、 [A1A0]で、指定してダメで、[A1： A0]でも

ダメ　[A1-A0]でダメ、[A1 A0]でダメ、[A1/A0]

でもダメで、どのようにオペランドを 指定するん

だろうと、しばらく悩んでいました。

　これは、MOV命令では、使えなくて特別なオペ

コードが、あるのではないかという事に なりまし

た。　で、オペランドに　A1A0が使えるオペコード

という事で、ルネサスR8C アセンブラの　資料を

探してみたら、有りました。　LDE命令、STE命令

です。

　このアセンブラの資料は、私の動画105にて、

ダウンロードコーナーの ZIPファイル内にある

「R8C_アセンブラ_リンカ資料.pdf」です。　やや

ページ数があるので、２ページを A4に縮小印刷

して、百均のボール紙バインダーに挟みました。

　ちなみに、バインダーも、A4サイズの物を、ハ

サミで、周りを切って A5サイズにして、コピー用

紙を２つ折りして挟みました。 ２冊になりました。

R8Cマイコン アセンブラ資料の印刷物

　この資料から、どうやって目的の命令コードを見つけ出したかの

手順を、動画でお見せします。　資料で、見つけたい機能を　探し

出す見方が、何かの役に立てばと思い、動画にしてみました。

通常、使うのは　殆どが　前半の ASM１だけです。

64Kbyteを 超える アクセス サブルーチン　1/3

; **
; ** ○　64Kbyteのアドレスレンジを超えるメモリアクセス **
; ** 先頭アドレスの 設定処理 **
; ** -- **
; ** 引数 （ 上位 4bit , 下位 16bit ） **
; ** R1 : 上位 メモリアドレス (b19 ～ b16) **
; ** R2 : 下位 メモリアドレス (b15 ～ b0) **
; ** 関数値： Void **
; **
 .glb _set_extadr
_set_extadr:

mov.b r1l, eadr_hi ; b19 ～ b16　R1L --> eadr_hi
mov.w r2, eadr_low ; b15 ～ b0 R2 --> eadr_low
rts

～～～～～～～～～～～～～～～～～～～～～～～～～～～～～～～～

;　*** データ セクション
; ---
eadr_hi: .blkb 1 ; 拡張アドレス上位 4 bit
eadr_low: .blkw 1 ; 拡張アドレス下位 16 bit

 64Kbyteを 超える アクセス

サブルーチン　1/3 です。

.glbは　グローバル宣言です。

.glb が無いと ローカル宣言で　

そのソースファイル内だけで有効

な名前というか ラベルに なりま

す。

_set_extadr: は ラベルです。

この場合、Cから呼び出される関

数名になります。 C側の コーディ

ングでは 先頭の _ は 必要ありま

せん。 eadr_hi：、eadr_low: も ラベ

ルです。　.blkb は byte変数宣言

です。　右の 1 は 1 個を意味しま

す。 .ｂｌｋｗ は word変数宣言です

。 因みに　mov.b は、左から右へ

の　byte幅の転送命令です。

mov.wは、word幅の 転送命令で

す。　ｒｔｓ は リターン命令です。

64Kbyteを 超える アクセス サブルーチン　2/3

; **
; ** ○　64Kbyteのアドレスレンジを超えるメモリ読み出し **
; ** -- **
; ** 引数 （ 無し ） **
; ** 関数値： byte データ **
; **
 .glb _get_ead_byte
_get_ead_byte:
 push.w a0 ; A0 ポインタレジスタ退避
 push.w a1 ; A1 ポインタレジスタ退避

 mov.w eadr_hi, a1 ; A1 = メモリ上位アドレス 4 bit
 mov.w eadr_low, a0 ; A0 = メモリ下位アドレス 16 bit
 lde.b [a1a0], r0l ; R0L = 読み出したデータ 関数値として返す
 inc.w a0 ; A0 = A0 + 1
 mov.w a0, eadr_low ; eadr_low に A0値を 格納

 pop.w a1 ; A1 ポインタレジスタ復帰
 pop.w a0 ; A0 ポインタレジスタ復帰
 rts ; リターン

 64Kbyteを 超える アクセス

サブルーチン　2/3 です。

関数名は get_ead_byteです。

アセンブラに関わる追加の説

明は、ラベルの後ろに付く　:

は、ラベルを 宣言する物で

す。　;　は、そこから右が、

コメントである事を示します。

　push.w命令は ワード単位

のレジスタを　スタックに積み

上げる命令です。

pop.w命令は　ワード単位で

スタックに積み上げた値を

レジスタに戻す命令です。

inc.w命令は、ワード単位のレ

ジスタ、または変数を +1 す

る命令です。　そして、今回

lde.b [a1a0],r0l 命令を

初めて 使用しました。

64Kbyteを 超える アクセス サブルーチン　3/3

; **
; ** ◆　64Kbyteのアドレスレンジを超えるメモリ書き込み **
; ** -- **
; ** 引数：　(Byte データ（ R1 ）) **
; ** 関数値：　無し Void **
; **
 .glb _put_ead_byte
_put_ead_byte:
 push.w a0 ; A0 ポインタレジスタ退避
 push.w a1 ; A1 ポインタレジスタ退避

 mov.w eadr_hi, a1 ; A1 = メモリ上位アドレス 4 bit
 mov.w eadr_low, a0 ; A0 = メモリ下位アドレス 16 bit
 ste.b r1l, [a1a0] ; R1 = 書き込むデータ　
 inc.w a0 ; A0 = A0 + 1
 mov.w a0, eadr_low ; eadr_low に A0値を 格納

 pop.w a1 ; A1 ポインタレジスタ復帰
 pop.w a0 ; A0 ポインタレジスタ復帰
 rts ; リターン

 64Kbyteを 超える アクセス

サブルーチン　3/3 です。

関数名は put_ead_byteです。

ｌde.b [a1a0],r0l 命令が

ste.b r1l, [a1a0] 命令に

変った以外は、前の処理と

同じです。

　今回のアセンブラルーチン

は、　一応　アセンブルして

エラーが、出ない事は確認し

てます。

　後は、実際動かしてみない

と　分からないですね。

視聴者の皆様方 先着16名さまに　基板を 送ります。

　前回の基板作成動画の企画の続きで
　今回の動画のコメント欄では ９番から16番の
８名様を　先着順に受け付け基板を　発送する
予定です。

　申し訳ありませんが、発送料が 有料です。
ゆうパケット 250円 ＋ CD-R等入れるプチプチ
封筒 50円 で、計： 300円です。
ゆうパケットは、追跡番号が　付いてます。

手続きの順番：
①　「R8C/Mの小基板、送って下さい。」と
　　コメントに 書き込んで下さい。

②　コメント書き込み後、私の所にメールが届く
　　ので書き込み時刻が 分かります。

③　私が、先着番号と、アルファベット３文字を　
　　コメント欄の返信に 書き込みます。

④　107動画の ダウンロードコーナーに、私の　
　　メールアドレスを　書いてますので、
　　1．YouTubeの チャンネル名
　　2.　先着番号と　アルファベット３文字
　　3.　基板 送り先　郵便番号と　住所
　　4.　送り先　名前
　　以上を、 メールに記載して　私のメール
　　アドレスに送って下さい。

⑤　送料送り先の ゆうちょ銀行の 記号、番号、
　　店番、口座番号を、追記してメールを 返信し
　　ます。ゆうちょATMの場合 送金料金 100円
　　です。 最初の手続きが ちょっと面倒ですが　
　　ゆうちょダイレクトで 送金すると、各月の
　　５回目までの送金は、無料との事です。

コメント欄には、絶対に個人情報は書かないで下さい。

⑥　送る準備は、事前にしておきますが、発送
　　料　300円の入金が 確認されたら、基板を
　　送ります。
　　その後、メールにて、ゆうパケットの追跡
　　番号を　お知らせします。

コメント、メールでのやり取りの例を示します。

 R8C/Mの小基板、送って下さい。

クマモン／コメント

 １、ABC　　（ 先着番号と　アルファベット３文字 ）

道草職人Take／コメント

　1.　クマモン
　2.　１、　ABC
　3.　〒860-8570
　　　　熊本県 熊本市 中央区 県庁内
　4.　クマモン

クマモン／メール

　1.　クマモン
　2.　１、　ABC
　3.　〒862-8570
　　　　熊本県 熊本市 中央区 県庁内
　4.　クマモン
　5.　ゆうちょ銀行の 記号、番号
　6.　ゆうちょ銀行の 店番、口座番号

道草職人Take／メール

入金確認後、基板発送、メールで追跡番号通知

道草職人Take
アルファベット３文字は
無いとは 思いますが、
割り込み偽装メール
対策です。

ダウンロードしたPDFファイルにも、このページは入ってます。

