
モールス信号 解読処理１　信号取込み

　まず、マイコンの入力ポートから、モールス信
号を、定周期で取り出す（ モールス信号のサ
ンプリング ）を行う事が、最初の処理です。

　マイコンで 定周期のタイミングを作りだすに
は タイマー割り込みを使用します。　今回は、
元々R8Cマイコン用に作成していたタイマー処
理　R8CM1_IOCS_TIMER.a30 アセンブラソース
に インクルードファイルの形でモールス信号取
り込みの ソースファイル morse_decipherment
.inc を 作成しました。 アセンブラの場合、変数
領域は、ソースの終りの方に、データセクション
という　セクション宣言の場所に　変数を宣言し
ます。　セクション宣言とは、プログラムの code
を フラッシュROM領域に配置したり、data を
RAM領域に配置するためのリンカに渡されるメ
モリ配置の宣言です。　　最初から　ちょっと難
しい話になってしまい、ごめんなさい。

 btst trbif_trbir ; 割り込み要求フラグ確認
 jz q_rb2_exit ; タイマーRB2割り込みでない
 bclr trbif_trbir ; 割り込み要求フラグクリア

 .include morse_decipherment.inc
 ; モールス受信解読処理 呼び出し

R8CM1_IOCS_TIMER.a30 内
タイマー割り込み　エントリー部分

md_phase_1: ; 解読処理／第１段階
 btst 0, md_swf ; 停止、開始スイッチ確認
 jz md_exit ; 停止時は、即終了

 dec.b md_ctr ; md_ctr <= md_ctr - 1
 jnz md_exit ; Zeroで なければ Exit
; 5回に１回降りてくる（ 1/5 分周 ）
 mov.b #5, md_ctr ; ダウンカウント5を再設定

morse_decipherment.inc 内　先頭部分

R8CM1_IOCS_TIMER.a30 のタイマー割り込みは、1ms
周期で回っているので、morse_decipherment.inc 内　
先頭部分で、1/5分周（ 5ms 200Hz ）に　している。

 .section bss_NE, DATA, ALIGN
; ===
; Uses : morse_decipherment.inc data
; ---
md_swf: .blkb 1 ; 停止、開始スイッチ
md_ctr: .blkb 1 ; 分周カウンタ 1/5で 5[ms]
md_sf1: .blkb 1 ; 入力 bit 履歴シフト
md_sf2: .blkb 1 ; フラグビット： b0=フィルタ
 ; 処理した端子データ
md_cnt: .blkb 1 ; bit幅カウンタ 最上位=Sflag
 ; 下位 7bit カウント値
md_cn2: .blkb 1 ; 保守用？

R8CM1_IOCS_TIMER.a30 内　最後の部分

　ここでは、あまり細かい部分は、理解する必
要は　無いです。　組み込み用マイコンは、プ
ログラムのコードは、ROMに配置して、変数等
のデータは、RAMに 置きます。　でも固定的な
データもあります。　例えば、ステッピングモー
ターの 加減速テーブルは、ROMに置きます。
　この場合は codeセクションに　初期値の入っ
たテーブルを配置します。

　C言語では、セクション情報とか、リンカに渡す
パラメータは、直接扱う事は出来ませんが、初期
値の入ったデータテーブル等は　const という予
約語を使えば ROM側に配置してくれるようです。
　const の詳細は、各C言語のマニュアルを　参
照して下さい。　あんまり基本的な話を書いてい
ると、本題のモールス解読に行き付けませんの
で、このくらいにしておきます。　

　私が　今回　アセンブラの話をするのは、ビット
操作処理において　C言語では出来ないような器
用な処理が出来るからです。　また、C言語よりコ
ンパクトな マシン語プログラムを生成できて処理
速度も高速化出来ます。　実は、今回のモール
ス解読において、ビット操作処理が非常に 役に
立つのです。 　モールス信号の瞬時値は、１か
0 の 1bitのデータです。　それを サンプリング
データとして貯め込むと、bitデータの羅列に なり
ます。 次に 図にして説明します。

time

　8bit の シフトレジスタを用意して、左シフトし
て最下位bitに、最新の bit データを入れる事
にします。　サンプルレイトは、5msなので、
5ms毎に、8bit レジスタを、左シフトして b0に
最新の取り込んだデータを入れる事にします。
　最初のステージでは、3bit同じデータが、続い
たかどうかを確認するデジタルフィルターの用
途に使用します。　最初、信号が、0 から 1 に
変わる状態を サンプリングしたデータを、順を
追って見てみたいと思います。

b7 　～ b0

左シフト
最新データ

入力信号： 0
b7 　～ b0t0A状態 0

入力信号： 0 1
b7 　～ b0t0A状態 1

入力信号： 0 1 1
b7 　～ b0t0A状態 2

t1

t1 t2

入力信号： 0 1 1 1
b7 　～ b0t0A状態 3 t1 t2 t3

A状態 3 にて、シフトレジスタの下位 3bitが 111
に　なりました。　連続した３サンプルで　111 に
なったので　デジタルフィルター出力は １と 確定
します。　具体的な判断の仕方としては、シフトレ
ジスタに　07h で AND を取ります。　その結果
が、７で あれば 　111ですから　デジタルフィルタ
出力は、１　とします。

time

time

time

　今度は、信号が、1 から 0 に　変わる状態を
サンプリングしたデータを、順を追って見てみ
たいと思います。

入力信号： 1
b7 　～ b0t0B状態 0

time

入力信号： 1 0
b7 　～ b0t0B状態 1

time

t1

入力信号： 1 0 0
b7 　～ b0t0B状態 2

time

t1 t2

入力信号： 1 0 0 0
b7 　～ b0t0B状態 3

time

t1 t2 t3

B状態 3 にて、シフトレジスタの下位 3bitが 000
に　なりました。　連続した３サンプルで　000 に
なったので　デジタルフィルター出力は 0 と 確定
します。　具体的な判断の仕方としては、シフトレ
ジスタに　07h で AND を取ります。　その結果
が、0で あれば 　000ですから　デジタルフィルタ
出力は、0　とします。　シフトレジスタの下位 3bit
が 111でも　000 でも無い場合は、どうなるの。
　この場合は、前の出力状態を 保持します。　例
えば、 101 や 010 は、通常は起こり得ないパタ
ーンで、信号にノイズが、載った場合などに発生
します。　この状態は、111 でも　000 でも無いの
で　前の出力状態を保持します。　よって細かい
バタつきは 抑制するフィルタとして 動作します。

　デジタルフィルターの欠点？は、信号の変化が
遅延して伝送される事です。　まあ、これはアナ
ログのローパスフィルターでも　遅れますよね。
　それとデジタルフィルター特有の現象として
遅延時間にジッターが生じます。　このジッター
は、送り元の信号の変化時間と　サンプリングク
ロックの　時間差というか　位相差で生じます。

入力信号：
time

出力信号：
time

遅延時間

入力信号：
time

出力信号：
time

遅延時間

入力信号：
time

出力信号：
time

遅延時間

入力信号：
time

出力信号：
time

遅延時間

あと、入力が チャタッた場合を、書いてみます。

入力信号：
time

出力信号：
time

遅延時間

C状態 1

C状態 2

C状態 3

C状態 4

C状態 5

　デジタルフィルターが、どのようなものか理解して頂けましたでしょう
か。？ あと、このデジタルフィルターの処理をアセンブラで組んだプ
ログラムをお見せします。

 mov.w md_sf1, r0 ; R0 <= md_sf2 + md_sf1
 btst p1_1 ; 端子 P1_1 を 確認
 rolc.b r0l ; R0Lを左シフトして 最下位bitに P1_1の状態が入る
 mov.b r0l, md_sf1 ; 変数 md_sft に 格納する bit履歴更新
 and.b #07, r0l ; 下位 3bitのみ 残す (3bit デジタルフィルタ処理)
 jz p201 ; Zero なら p201へ行く
 cmp.b #07, r0l ; R0L <> 7 か。？
 jnz p205 ; で、なければ p205へ行く

 bset 1, md_swf ; ★　Hi状態 確定(md_swf.b1)
 jmp p205 ; Phase_2 へ 行く
p201:
 bclr 1, md_swf ; ★　Low状態 確定(md_swf.b1)
p205:

　アセンブラを、やった事が無い方にとっては、暗号のようなコーディングと
思われるでしょうが、アセンブラをやった事がある人間にとっては、非常に
シンプルな言語なのです。　人によっては原始的と表現される方もいます。
一つハッキリ言えることは　使用する CPUの資源を　全て使えます。

　CPU資源を全て使え
るという事は、CPUの性
能を最大限発揮させる
事も出来ます。
　パソコンCPUのように
超高速で、超大容量メ
モリを搭載しているマシ
ンであれば、アセンブラ
を使う必要はありませ
ん。　逆に　低価格の
ローエンドマイコンに
とっては、最大限の性
能を発揮させる場合は
アセンブラを使用する
事は、有効な手段で
す。

モールスパルスのエッジ検出とパルス幅測定

　デジタルフィルターの出力信号を取り込み、
Hi から　Low または　Low から　Hiの 切り替え
タイミングの検出　これをエッジ検出と呼んでま
す。 　エッジが、分かれば そのエッジから　次
のエッジまでの　サンプル数を計ると　パルス
幅が、分かります。　
言葉では分かりにくいのでまた、図を示しま
す。　エッジ検出は、先ほどやったデジタルフィ
ルターの シフトレジスタと同様の方法で、ビット
の履歴を取ります。　エッジ検出の場合は、下
位 2bit（ 言い方を変えると　最新の 2bit ）の状
態を、確認すれば出来ます。

入力信号： 0
b7 　～ b0t0D状態 1

time

入力信号： 1
b7 　～ b0t0E状態 1

time

入力信号： 0 1
b7 　～ b0t0D状態 2

time

t1

下位 2bitの信号が 01 であれば、Lowから Hi の
立ち上がりエッジと 分かります。

入力信号： 1 0
b7 　～ b0t0E状態 2

time

t1

下位 2bitの信号が 10 であれば、Hi から Low の
立ち下がりエッジと 分かります。

ﾓｰﾙｽ信号： 1 1 1
b7 　～ b0t0F状態

time

t1 t2

　下位 2bitの信号が 11 であれば、Hi の 状態を
保持している状態である事が分かります。
この短い期間は、Hi 側の パルス幅を サンプル
数で カウントする期間です。　下の例では サン
プル数 6 です。

1

time
ﾓｰﾙｽ信号：

2 3 4 5 60

立上りエッジ
　　 期間

立下りエッジ
 期間

ﾓｰﾙｽ信号： 0 0 0
b7 　～ b0t0G状態

time

t1 t2

　下位 2bitの信号が 00 であれば、Low の 状態
を 保持している状態である事が 分かります。

　この短い期間は、Low 側のパルス幅を サンプ
ル数で カウントする期間です。　
下の例では、サンプル数 7 です。

1

time

ﾓｰﾙｽ
信号：

2 3 4 5 60

立下りエッジ
 期間

立上りエッジ
　　 期間

7

　サンプル カウンタの クリアは、立ち上がり、又
は 立ち下がりの　エッジ検出で、カウンタに入っ
ている値を　別変数に 移してから　カウンタを　
ゼロ クリアしています。　因みに　カウントは、
Hi 側と、Low 側を 区別する必要があるので
Hi 側は、初期値ゼロから　＋１して いきます。
Low側は、初期値ゼロから －１して いきます。
　ちなみにカウンタ変数は、Byte整数としていま
す。　表せる値は、-128 ～ 127 です。

　Byte整数は、マイナスの値を 通常の２の補数
表現で表します。　最上位 bit 7 が サインビット
となります。　アセンブラで　負の数を 正の数に
する場合は、8bit レジスタの 全ビットを bit 反転
して、1を足します。　要は、２の補数です。
　この　Byte整数が　正の値の場合 Hi 側のパル
ス幅カウントです。　Byte整数が　負の値の場合
Low 側の パルス幅カウントです。
　で、極端に遅いモールス信号が入って来ると
カウント値が、大きくなって　Byte整数なので
オーバーフローする恐れがあります。
　よって、正の値を　インクリメントする場合は
既に　127 に なっている場合は、インクリメントし
ないようにしています。　よって 127 で　頭打ちに
なります。　同様に　負の値を　デクリメントする
場合は、既に　-128 に　なっている場合は、デク
リメントしないようにしています。　よって負の最
大値は、-128 で　頭打ちになります。

　今回、テストでやってみて、短点１、長点３の　
長さでは、まずオーバーする事は無いようです。

　長点、短点の間の間隔、音楽で言うなら休符の
部分ですが、文字内の 間隔は　１ で、文字間の
間隔は、３の長さです。 語間の長さが　７ なので
この　７ という長さが、超スローなモールスの場
合、 -128 の頭打ちになる事を確認しています。
　-128 になっても問題は、無いようです。
　で、ここまでが、タイマー割り込み処理のアセン
ブラ　プログラムで、やっている処理です。

　この後は、上記　正または　負の パルス幅 カ
ウント値を、C言語で作成したメインループ処理
に渡します。　パルスカウントした後なので、実時
間処理的な シビアな要素は、だいぶ緩和されて
ます。 これからの処理は、モールス パルス幅を
用いて　まず、長点と、短点を区別する判定値の
作成、更新を行います。 判定値は、短点を基準
に、生成してます。
　

 mov.b md_sf2, r0h ; R0H <= md_sf2 フィルター処理後のシフトレジスタ
 mov.b md_cnt, r0l ; R0L <= md_cnt サンプルカウンタを ロード
 btst 1, md_swf ; Hi,Low確定フラグ(md_swf.b1)確認
 rolc.b r0h ; R0H <= R0H << 1 + Cflag (md_sf2 シフトレジスタ)
 mov.b r0h, md_sf2 ; md_sf2 <= R0H / md_sf2 更新 格納

 and.b #03h, r0h ; 下位 2bitのみ残す
 cmp.b #01h, r0h ;（ Low -> Hi 変化 ）R0H bitパターン 01 を 確認 Up
 jz p202 ; 一致したら p202へ

 cmp.b #02h, r0h ; （ Hi -> Low 変化 ）R0H bitパターン 10 を 確認 Down
 jz p203 ; 一致したら p203へ

 cmp.b #03h, r0h ; R0H bitパターン 11 の確認 (Hiを 保持)
 jnz p204 ; パターン11 で 無ければ p204へ

　このアセンブラのリストは、R0H レジスタを シフトレジスタとして、デジタルフィルター通過後の 最
新 bitデータを　ビットテスト命令と、キャリーフラグを含む 左ローテート命令で、R0H の最下位 ｂｉｔ
に 最新 bitデータを 入れ込み　md_sf2変数に格納します。　次に　アンド命令で R0Hの 下位 2 bit
のみ残し、01の Low から Hi、10の Hi から Low、そして 11 の Hiレベルの保持を　確認します。

 ; ★ サンプルカウンタ　インクリメント処理
 cmp.b #7Fh, r0l ; ★　最大値 確認 リミット処理
 jz md_exit ; 最大値であれば Phase_2 へ
 inc.b r0l ; R0L <= R0L + 1
 jmp md_phase_2 ; Phase_2 へ

p204: ; ★ サンプルカウンタ　デクリメント処理
 cmp.b #80h, r0l ; ★　R0L : マイナス最小値 確認 リミット処理
 jz md_exit ; マイナス最小値であれば Phase_2へ
 dec.b r0l ; R0L <= R0L - 1
 jmp md_phase_2 ; Phase_2 へ
p206:

 mov.b r0l, md_cn2 ; サンプル数の Byte変数を、次の処理へ渡す
 mov.b #0, r0l ; カウント値 クリア
md_phase_2: ; 解読処理／第２段階
 mov.b r0l, md_cnt ; カウント値を md_cntへ格納する
 jmp md_exit

　前ページの 01＝Up、10＝Down、11＝Hi 保持、00＝Low 保持の判定により、処理を振り分けます。
11＝Hi 保持では、サンプル数のインクリメント処理、00＝Low 保持では、サンプル数のデクリメント処
理を 行います。 01または 10 の場合、p206へ飛びます。 Byte整数の サンプル数を md_cn2変数で

　次の処理に
渡します。
　そして
カウンタ変数
md_cnt を
クリアして
次のカウント
に備えます。
　

高速 パルス幅 サンプルカウントの　ダンプリスト

　下の画像は、印刷した紙に　フェルトペンで、色を付けたり書き込みを行っていますが、この数値は
Pが　Hiレベル側、Nが　Lowレベル側の カウント数の ダンプリストです。　赤線アンダーラインのとこ
ろを、タイムチャートにしてみます。 何となく タイムチャートのパルス幅と 下の数表の関係が わかり
　　 ましたでしょうか。

20

6

20

20

6

7

21

6 6 6 6

21 217 6

最大速度 パルス幅は　短点が、6～7、長点が、20～21、語間が 49～50 と　なります。

49

中速 パルス幅 サンプルカウントの　ダンプリスト

　下の画像は、印刷した紙に　フェルトペンで、色を付けたり書き込みを行っていますが、この数値は
Pが　Hiレベル側、Nが　Lowレベル側の　カウント数の ダンプリストです。
中速度 パルス幅は　短点が、11～12、長点が、36～37、語間が 87～88 と　なります。
(凡そ　高速の 2倍弱伸びた感じです。)

低速 パルス幅 サンプルカウントの　ダンプリスト

　下の画像は、印刷した紙に　フェルトペンで、色を付けたり書き込みを行っていますが、この数値は
Pが　Hiレベル側、Nが　Lowレベル側の　カウント数の ダンプリストです。
低速度 パルス幅は　短点が、18～19、長点が、56～58、語間が 128 と　なります。
(凡そ　高速の 3倍 伸びた感じです。 、語間は 128 で、オーバーフローしているようです。)

//**
//** 短点と判定値の設定 **
//** Mpm.p1n : 短点の値 **
//** Mpm.d2n : 短点 長点間の 判定値 **
//** Mpm.d5n : 長点 語間の 判定値 **
//**
void set_dot_deci_v(BYTE c)
{
 if(c == 128) return;
 if(Mpm.sw == 0)
 { Mpm.sw = 1; mmd_store('E'); }
 else
 {
 if(c < DOT_CNT)
 {
 Mpm.p1n = c; // 短点のサンプル数
 Mpm.d2n = c << 1; // Mpm.d2n = C * 2
 Mpm.d5n = c << 2; // Mpm.d2n = C * 4 (４倍に変更)
 // 語区切りと 文字区切りの判定に 難があるため
 Mpm.dly = (int)c << 1 + 5;
 // 入力タイミングによる、遅延時間調整
 if(c > 14) Mpm.dly += 20;
 }
 }
}

 次は、メインループ内で使用される set_dot_deci_v 関数
です。 この関数は、短点の サンプル数を 基準にして
短点１　長点３　語間７の　判定値を　設定します。

 判定値は、短点１と　長点３の ちょうど中間は、２に
 なります。　長点３と　語間７の中間は　５になりますが
 たまに、うまく行かないため、４ にしました。
 入力タイミングによる遅延時間調整というのは、
 一番 最後に処理したモールス文字が、出て来ないで
 内部に残留する現象が発生したため、タイマー監視で
 一定時間経過したら、文字を吐き出すための処理の
遅延タイマー値です。　

//**
//** モールスパルス長 判定処理 **
//** ---------------------------------- **
//** c : モールス パルス幅 **
//** ---------------------------------- **
//** 関数値： 0 = 判定不能 **
//** 1 = 短点 **
//** 3 = 長点 **
//** 7 = 語間の隙間 **
//**
BYTE get_morse_width(BYTE c)
{
 if(Mpm.sw == 0) return 0; // 判定不能
 if(c < Mpm.d2n) return 1; // 短点と 判定
 else
 {
 if(c < Mpm.d5n) return 3; // 長点と 判定
 }
 return 7; // 語間の隙間と 判定
}

　get_morse_width関数です。
モールス信号のパルス幅は、モールスの速度により、
パルス幅（ サンプル数 ）が、変わります。　それを一律に
短点の場合は １、長点の場合は ３、語間の場合は 7 と
置き換える処理です。

 速度 | 高速 　| 中速　 | 低速 | 判定結果

 短点　| 6～7 | 11～12 | 18～19 | 1
 長点　| 20～21 | 36～37 | 56～58 | 3
 語間　| 49～50 | 87～88 | 128 | 7

 パルス幅のサンプル数を、１，３、７ に　カテ
ゴライズした　という事です。　
　こうすると、後の処理が　やりやすく なりま
す。

 c = morse_pulse_width(); // モールス信号 パルス幅検出
 if((c & 0x80) != 0) // 最上位 サイン itが 1 か 判定
 { // 負の値（ Low level ）
 c = (~c) + 1; // 負の値の場合： 絶対値を取る
 set_dot_deci_v(c); // 短点と判定値の設定
 m = get_morse_width(c); // モールス短点幅の値
 if(m == 3) // 長点幅の 隙間
 {
 mmd_send(0); // 文字を パソコンに送信
 }
 if(m == 7) // 語間の 隙間
 {
 mmd_send(1); // 文字を PCに送信後に スペース1個を送信
 }

}
else

 C側のモールス解読メイン関数の 上半分です。 実際のソースから、ちょっと余分な処理は外して
 います。一番上の morse_pulse_width関数は、アセンブラのタイマー割り込み処理から、
 Byte整数のパルス幅を、取り出す関数です。
　set_dot_deci_v 関数と　get_morse_width 関数は、前ページで、説明した関数です。

 このメイン関数前半では、Byte
整数が、負の値（ モールスパル
スの Low側 ）の処理です。
 m==3 は 長点幅の隙間で、文字
の終りを意味します。
 M==7 は、語の 終りを意味しま
す。 m が、3 か 7 の場合 カテ
ゴライズした短点、長点文字列
から 対応するASCIIコードを 見
つけ出し パソコンに ASCII文字
コードを 送信します。

 送信する関数が、
mmd_send関数です。

 else
 { // 正の値（ Hi level ）
 set_dot_deci_v(c); // 短点と判定値の設定
 m = get_morse_width(c); // モールス短点幅の値
 if(m == 0)
 { // 初期段階での判定を 追加
 if(c < DOT_CNT) m = 1;
 else m = 3;
 }
 if(m == 1) mmd_store('1'); // 短点文字 格納
 if(m == 3) mmd_store('3'); // 長点文字 格納

}

　前ページの続きで　C側のモールス解読メイン関数の 下半分です。　前ページは　負の数で
　パルスの Low側 隙間でしたが、このページの処理は、正の数で、必要となる　短点、長点の
 データとなります。　ここでは、モールス １文字を　構成する 長点、短点を '1' 、'3' の　文字で　
 順番に 連結格納して 行きます。　
 例えば、モールスの C は、- ・ - ・ で　１文字分連結した 長短文字列は、"3131" となります。　
　Q は、- - ・ - で　１文字分連結した 長短文字列は、"3313" となります。　

 この長短文字を、順次格納して
いく関数が、mmd_store 関数で
す。
 １文字分 長短文字列を連結した
ら、mmd_send 関数で送信する事
になります。

//***
//** 1文字を構成する 長短文字列をメモリに格納 **
//** --- **
//** c : １パルス文字 **
//** '1' : 短点 **
//** '3' : 長点 **
//** '+' : 文字間 ３隙間 **
//** ' ' : 語間 ７隙間 **
//** 'E' : Error 無効文字 **
//***
void mmd_store(char c)
{

BYTE i, mx;

mx = PULSE_MAX -1; // 最大 格納文字数
i = Mpm.mmc; // 格納 位置取り出し
Mpm.mmd[i] = c; // 文字列配列に格納する
if(i < mx) i++;　// 格納位置インクリメント

Mpm.mmc = i; // 格納位置 格納
}

　1文字を構成する 長短文字列をメモリに
　格納する関数　　mmd_store 関数

　中身は、構造体変数内の mmd[] の 配列
　に、長短文字を順次格納して行くだけです。
　例えば、１回目：　'3'、２回目：　'1'、３回目：
　'3' 、４回目：　'1' で　書き込むと配列内には
　"3131" ツー ト ツー トで、モールスの C の
　文字を意味します。

//******************************
//** パルス文字列出力 **
//******************************
void mmd_send(char sw)
{
 BYTE i;
 char c;

 i = Mpm.mmc;
 if(i == 0) return;

 Mpm.mmd[i] = 0; // 終端に Null
 c = decode_ascii(Mpm.mmd);
// モールス短点長点文字列から ASCII文字コードに 変換

 sio_send(c); // １文字シリアル送信
 if(sw == 1) sio_send(' '); // スペース送信

 Mpm.mmc = 0;
}

　　長短文字列を　ASCIIコードに変換して、シリアル通信で
　1文字送信する関数　　mmd_send 関数です。
　　この中で、重要な関数が　decode_ascii関数です。
　decode_ascii関数の引数 Mpm.mmd[]は　文字列です。
　前ページの例では　C であれば "3131" の文字列が
　渡されます。 で、引数が　"3131" であれば、decode_ascii
　関数の　関数値は、ASCII 文字コード　'C'　に なります。
　この文字コード 'C' を　シリアル通信でパソコンに送ります。

char decode_ascii(char *tx)
{
 if(str_comp(tx, "13") == 1) return 'A';
 if(str_comp(tx, "3111") == 1) return 'B';
 if(str_comp(tx, "3131") == 1) return 'C';
 if(str_comp(tx, "311") == 1) return 'D';
 if(str_comp(tx, "1") == 1) return 'E';
 if(str_comp(tx, "1131") == 1) return 'F';
 if(str_comp(tx, "331") == 1) return 'G';
 if(str_comp(tx, "1111") == 1) return 'H';
 if(str_comp(tx, "11") == 1) return 'I';
 if(str_comp(tx, "1333") == 1) return 'J';
 if(str_comp(tx, "313") == 1) return 'K';
 if(str_comp(tx, "1311") == 1) return 'L';
 if(str_comp(tx, "33") == 1) return 'M';
 if(str_comp(tx, "31") == 1) return 'N';
 if(str_comp(tx, "333") == 1) return 'O';
 if(str_comp(tx, "1331") == 1) return 'P';
 if(str_comp(tx, "3313") == 1) return 'Q';

 // 以下　省略

　　モールスの長点短点文字列を、ASCII
　コードに　変換する　decode_ascii 関数
　です。 　この関数内で 使用されている
str_comp 関数は、文字列の比較関数 　関
数値 が　１ で　文字列一致 です。

　ひたすら　長点短点文字列と　一致する
　文字パターンを　探して行く関数です。
　一致すると　関数値が、対応する ASCII
　コードを　返します。 　ｔｘが "3131"で
あれば、'C' が　返されます。 一致する
パターンが　無ければ Null を　返します。

　一応、ここまでで　モールス受信解読
　処理の 説明は　終りです。

　長々と御視聴して頂き、
　　　　　　　　誠に　お疲れ様でした。

