
IOCSとは、何なのか

　過去に、私のダウンロードサイトから、HEWの
Projectを　ダウンロードされた方であれば、
Projectのソースファイルに　"IOCS"という文字
列を含んだソ－スファイル名を、数本見た事が
あると思います。　ＩＯＣＳは、ＩｎｐｕｔＯｕｔｐｕｔＣｏ
ｎｔｒｏｌＳｙｓｔｅｍの略です。　要は、各種 組み込
み用マイコンの、入出力周りの アクセスを行う
サブルーチンを 集めて、数本のファイルにした
物です。　で、R8Cマイコン用は、私が作成しま
した。　過去に 似たような物を H8/300Hマイコ
ン、SH2マイコン等で作った事があります。

　まだ、この程度の物で、ライブラリと呼ぶには
おこがましいのですが、ライブラリと呼ばれる
物は、通常 リンク時に連結編集される LIBファ
イルになっています。　

パソコンの STDIOの　ライブラリとかは、もう既
に仕様が固まっているので、ライブラリファイル

　の内容を　変更、改修する事は　まずないと思
います。　その関係で　コンパイルした　オブジェ
クトファイルというか、リロケータブルファイルを、
１本のオブジェクトファイルに　まとめた物を　ライ
ブラリファイルと呼びます。　ライブラリのソース
ファイルは、別途管理されている場合が、多いで
す。　商用の開発環境であれば、ライブラリファイ
ルのソースファイルは、公開されて無い場合が
多いです。　Linuxの環境は、基本オープンソー
スなので、gccの ライブラリファイルの　ソースを
ダウンロードする事も可能と思います。

で、組み込みマイコンの場合ですが、特に　I/O
回りは、CPUによって異なるので、なかなか標準
化は、難しいと思います。 よって、I/O周りのサブ
ルーチンは、CPUのアーキテクチャを生かす形で
都度作成する事になると思います。　それらの
サブルーチン集を、IOCSと呼ぶ事にしています。

　IOCSを構成するファイル群です。

 cpu_select.h // CPU選択の C言語ヘッダファイルです

 cpu_select.inc // CPU選択の アセンブラ インクルードファイルです。　

 IOCS_Readme.txt // 最初に見て下さいの説明ファイルです。

 IOCS_sio_print.c // 数値 文字列変換を含む 文字列のシリアル送信 関数群です。

 R8CM12_IOCS.h // C言語で使用するための IOCSの 全関数プロトタイプ宣言です。

 R8CM1_IOCS_ADC.a30 // A/Dコンバーター処理関数群です。

 R8CM1_IOCS_INIT.a30 // 高速クロック切り替えを含む 基本関数群です。

 R8CM1_IOCS_TIMER.a30 // 1msを ベースとするインターバルタイマ処理関数群です。

 R8CM1_IOCS_UART.a30 // 調歩同期式シリアル通信 基本関数群です。

 sample_main.c // メイン関数、初期化関数の 雛型を 記述したファイルです。

 sect30.inc // RB2タイマーと シリアル受信の 割込み関数を 追加した

// 割込みベクトルテーブルの入ったインクルードファイルです。

 string_sub.c // 文字列編集、数値：文字列変換の 関数群のファイルです。

 string_sub.h // string_sub.cの 関数プロトタイプ宣言ファイルです。

 TypeDefine.h // 追加したデータ型のファイルです。

　また、要求仕様によっては、その用途に合わせ
I/O回りのサブルーチンを　作りなおす事にも、な
りかねないので、私は、ソースファイルを　公開
する形で提供しています。　私の IOCSモジュー
ルというか、ソースファイルの紹介を しておきま
す。

①　cpu_select.h 　 // C 用 ヘッダーファイル
②　cpu_select.inc　// アセンブラ用 ヘッダー
　　　　　　　　　　　　//　ファイル
この場合の、cpu_selectというのは、R8C/M110A
と　R8C/M120Aの どちらを使うかを　宣言する
ファイルです。

③　IOCS_Readme.txt // コピー時の注意書きを
　　　　　　　　　　　　// 書いています。
④　sect30.inc　　// 元々 R8Cの Project生成時
 // に 自動生成されるファイル
 // です。 アセンブラのインク
　　　　　　　　　　　// ルードファイルです。

　sect30.inc内には、R8Cマイコンの可変ベクトル
テーブルが　含まれます。　各種周辺回路からの
割り込みが発生した時に、対応する割り込み番
号に対応する、割り込み処理のエントリーアドレ
スの　ラベルを定義する事になります。
　Project生成直後は、この sect30.inc には、割
り込み処理のエントリーアドレスは　何も登録さ
れていません。　要は、割り込み処理ルーチンが
何もない訳です。　で、私の方で、最低限の割り
込み処理という事で、
　.lword　　irq_uart0_recv　; vector 18 / UART受信
　.lword　　irq_timer_rb2 　 ; vector 24 / タイマー処理

を　宣言しています。
べクター18の UART受信は、シリアル通信の受
信処理です。 irq_uart0_recv が、受信割り込み処
理エントリアドレスです。　ベクター 24の タイマー
処理は、インターバルタイマの時間の基準となる
定周期割り込みです。　irq_timer_rb2 が、タイ
マー割り込み処理 エントリアドレスです。

シリアル通信では、送信割り込みの機能も使
えますが、使っていません。　理由は　RAM容
量が 小さいからです。 通信で割り込みを使う
際は、リングバッファも、組みにして使う事にな
ります。　受信時のリングバッファは、仕方ない
ので、デフォルト 64byte 宣言しています。

送信時のリングバッファを　宣言したくなかった
ので、送信割り込みを使用していません。
送信割り込みを使わない事による弊害は、僅
かですが、送信時に　SIO周辺回路の送信バッ
ファレジスタが、１文字送信し終わって、空きに
なるまで、待たされることです。　最大の待ち時
間は、38400bpsで、260μsです。　その待ち時
間の間に、タイマー割り込み処理も 受け付け
る事も 可能なので、全体のパフォーマンスは
そう落ちないと思います。

 どこから、シリアル通信の送信割り込みの話に
　なったかというと、sect30.incの 割り込みテーブ
ルの話からでしたね。
　では、IOCSのモジュールの話に戻ります。
⑤　R8CM1_IOCS_INIT.a30 ; R8Cのアセンブラ
　　クロック発振器の変更その他基本的な機能　
　　が、入ってます。R8Cマイコンは、起動直後は
　　125KHzの遅いクロックで動いてます。 それを
　　外付けの 20MHzの水晶発振子に変える事が
　　出来ます。　周波数精度は落ちますが、CPU
　　内蔵の高速RC発振器で 20MHzで動かす事
　　も可能です。
⑥　R8CM1_IOCS_TIMER.a30 ; R8Cのアセンブラ
　　先ほどの　irq_timer_rb2 の割り込み処理関数
　　は、このモジュール内に宣言されています。
　　1ms周期のタイマー割り込みですが、ソフト的
　　には、1ms単位のタイマ処理２本と 1/10分周
　　した周期で　10ms単位のタイマ処理２本の計
　　４本使えます。

⑦　R8CM1_IOCS_UART.a30 ; R8Cのアセンブラ
　　先ほどの irq_uart0_recv の 割り込み処理関
　　数は、このモジュール内に宣言されていま
　　す。　外から受信する データは 割り込み処
　　理内で、最大 64byteまで 貯め込む事が
　　出来ます。　リングバッファ内から受信文字
　　を取り出す関数が あります。 送信処理は
　　1byte 直接 SIO周辺回路のレジスタに書き
　　込みます。　あと、文字列等を送信するラッ
　　パー関数を　C言語のモジュールで 作成し
　　ています。

⑧　R8CM1_IOCS_ADC.a30 ; R8Cのアセンブラ
　　A/Dコンバータの初期化と、シンプルな A/D
　　変換を　実行する関数を用意しています。
　　A/D変換で使用できるピンと　シリアル通信
　　で使用するピンが、一部　重なっています。
　　シリアル通信を使わない場合は、A/D入力
　　として使える全てのピンを、使用できます。

　シリアル通信を 使用する場合は シリアル通信
で使用するピンを避けて、A/D入力の 初期化を
行って下さい。
⑨　string_sub.c // 文字列編集用のモジュール
　　文字列の編集以外に、数値と文字列の変換
　　処理も入れています。　下の IOCS_sio_print.c
　　内から、呼び出される関数も あります。
　　このモジュールの関数を宣言する string_sub
　　.h も あります。

⑩　IOCS_sio_print.c // シリアル通信で 文字列
　　　　　　　　　　　　　// を出力するモジュール
　　Byte、Word、LongWordの整数を　その値を表
　　す文字列に変換する関数 16進のダンプ処理
　　を 実装しています。 　ここまでで、説明した
　　string_subの関数以外は、R8CM12_IOCS.h に
　　プロトタイプ宣言が、行われています。
　　その他、追加したデータ型を宣言した
　　Type_Define.h が、あります。

　IOCSに関わるヘッダーファイルは、
R8CM12_IOCS.h を １本呼び出せばいいです。
R8CM12_IOCS.h 内で、cpu_select.h と　Type_
Define.h を　呼びだしています。　

　IOCSファイルを　HEWの 新規プロジェクトに
コピーした直後、すぐに 行う必要がある設定が
あります。cpu_select.inc にて、使用するマイコ
ンが、M110A か　M120A かを　選択する必要
が、あります。　
　　以下は、cpu_select.inc の 内容です。

 .include sfr_r8m11a.inc 　 ; R8C/....
; .include sfr_r8m12a.inc 　　; R8C/....

MPU_SEL .EQU 1 ; R8C/M110A を選択
;MPU_SEL .EQU 2 ; R8C/M120A を選択

DEBUG_LED　.EQU　1　; デバッグ用 LED 使用する
; DEBUG_LED　.EQU　0　; デバッグ用 LED 使用し

　　　　　　ない

　行の左端に、 ;　が、付いていると、それより右
は、コメント（ 無効な行 ）に　なります。
　左下の　cpu_select.inc の　設定では　左端の
;　を 赤で 示しています。　で、緑の文字が 無効
な行になっています。　よって、最初の２行は
インクルードの sfr_r8m11a.inc が　有効になって
います。 sfr_r8m11a.inc は R8C/M110A CPU用
I/Oポートや、周辺回路の 名前の宣言を してい
ます。　Project生成時、CPUに応じて HEWにて
自動的に付加されます。　内容は、かなり大量の
宣言ファイルで 長いです。 で、このファイルは、
R8C/M110Aと R8C/M120Aでは、若干内容が異
なります。　異なる部分は、主に M120Aには、あ
るが　M110A には無い物（ 足ピンと それに接続
される周辺回路 ）の 宣言です。 　HEWにて
Project生成時、指定した CPUの sfrファイルが
生成されます。　もう片側の sfr ファイルは生成
されませんので、使用する CPUに合わせ　ｓｆｒ
ファイルの 指定を 行って下さい。

　中段の　MPU_SELは、CPUの選択です。
ここも、必要でない側を　;　で　コメント化して
下さい。

　DEBUG_LED は　p3_7 のポートに 基板上の
LEDが　Lowで 点灯する状態で 接続されている
事を想定して IOCSの タイマー割り込み処理に
て　割り込み処理を行っている間だけ点灯しま
す。　タイマー割り込み処理が正常に行われてい
る場合、１ms周期で　10～20μs 点灯します。
見た目は、LEDが　薄く点灯します。

　p3_7を　別の用途で使用したい場合は、
DEBUG_LED .EQU　0 を　有効にして下さい。
タイマー割り込み処理内では、アクセスされなく
なります。
　あと、似たようなファイルで、cpu_select.h という
ファイルが あります。　設定する内容は、同じで
すが、C言語用なので、コメントは　; では無くて
// で　行って下さい。

 .include sfr_r8m11a.inc 　 ; R8C/....
; .include sfr_r8m12a.inc 　　; R8C/....

MPU_SEL .EQU 1 ; R8C/M110A を選択
;MPU_SEL .EQU 2 ; R8C/M120A を選択

DEBUG_LED　.EQU　1　; デバッグ用 LED 使用する
;DEBUG_LED　.EQU　0　; デバッグ用 LED 使用しな

　　　い

　以下は、R8C/M110A 用です。

; .include sfr_r8m11a.inc 　 ; R8C/....
 .include sfr_r8m12a.inc 　　; R8C/....

;MPU_SEL .EQU 1 ; R8C/M110A を選択
MPU_SEL .EQU 2 ; R8C/M120A を選択

DEBUG_LED　.EQU　1　; デバッグ用 LED 使用する
;DEBUG_LED .EQU　0　; デバッグ用 LED 使用しな

い

　以下は、R8C/M120A 用です。

sample_main.c ソースに関して

　main 関数の 先頭部分と、初期化処理関数
は、毎回　ほぼ同じ作りになります。 で あれば
雛型を　１本作っておく方が、手っ取り早いかな
と、思った次第です。　中身を見てみましょう。

 右のソースが、sample_main.c の前半です。
最初にインクルードファイル　R8CM12_IOCS.h
を 取り込んでいます。
　関数プロトタイプ宣言で　void main(void);
と　void init_proc(void); の ２本を宣言してい
ます。　init_proc 関数は　次のページでお見せ
します。

　制御系で使う　メイン関数は　殆どの場合、
最初に　各 I/O の　初期化処理を 行い、次に
メイン処理の エンドレスループに 入ります。

 // インクルードファイル
 // ---
 #include "R8CM12_IOCS.h" // IOCS サブルーチン宣言

 // 関数プロトタイプ宣言
 // ---
 void main(void); // メイン関数
 void init_proc(void); // 初期化処理メイン

 //************************
 //** メイン処理 **
 //************************
 void main(void)
 {

init_proc(); // 初期化処理

while(1)
{
}

 }

// 高速クロック切り替え設定
// ---

setup_ext_osc(); // 外部発信子使用
// setup_in_osc20(); // 内部 20MHz RC OSC使用
// R8C/M120Aの I/O ポート初期化
// ---

p1 = 0x00; // P1 出力値 仮初期化
p3 = 0x80; // P3 出力値 仮初期化
p4 = 0x00; // P4 出力値 仮初期化

pd1 = 0x44; // ポート１ 入出力方向設定
pd3 = 0x80; // ポート３ 入出力方向設定
pd4 = 0xC0; // ポート４ 入出力方向設定

// 周辺回路 初期化
// ---
// adc_init(0x010F); // 内蔵 ADC 初期化
 //(ch.0 ～ ch.3 使用) M120A用
// adc_init(0x0102); // 内蔵 ADC 初期化
 // (ch.1 のみ使用) M110Aで使用した

sio_init(0, 0); // シリアル通信　初期化
// (38400bps, data=8, Parity=Non, stop=1)
timer_init(); // インターバルタイマー初期化
asm(" fset I"); // 割り込み処理 許可

}
void init_proc(void)
{

　init_proc 関数は、下の関数名と 始まり中カッ
コから、右側のソースに続きます。
　起動直後は 125kHzの低速クロックなので、
20MHzの高速クロックに切り替えます。　
　ちなみに、20MHzで動かしても マイコン単体
では、10mAも 消費しません。　 かなり低消費
電力です。　切り替えは、setup_ext_osc関数
で、外付けの水晶発振子を使うか、
setup_in_osc20関数で、CPU内部の RC発振器
を使う事になります。　クロック周波数の精度、
安定性は、水晶発振子が、優れています。
　RC発振器を使う場合は、発振周波数のブレ
が、±1%以内で 問題ない場合で、水晶発振子
の足ピンを 他の用途に使いたい
（ 要は、足ピンが足りない ） 場合です。
　

// R8C/M120Aの I/O ポート初期化
// ---

p1 = 0x00; // P1 出力値 仮初期化
p3 = 0x80; // P3 出力値 仮初期化
p4 = 0x00; // P4 出力値 仮初期化

pd1 = 0x44; // ポート１ 入出力方向設定
pd3 = 0x80; // ポート３ 入出力方向設定
pd4 = 0xC0; // ポート４ 入出力方向設定

// 周辺回路 初期化
// ---
// adc_init(0x010F); // 内蔵 ADC 初期化
 //(ch.0 ～ ch.3 使用) M120A用
// adc_init(0x0102); // 内蔵 ADC 初期化
 // (ch.1 のみ使用) M110Aで使用した

sio_init(0, 0); // シリアル通信　初期化
// (38400bps, data=8, Parity=Non, stop=1)
timer_init(); // インターバルタイマー初期化
asm(" fset I"); // 割り込み処理 許可

}

　R8C/Mマイコンにおいて、実装されている
 I/O ポート初期化は、p1と　p3と　p4 ３つです。
M120Aは、p1 が　8bit揃っていますが、 M110A
は、p1 は　7bitです。　他のポートも M110Aの
方が ピン数が少ないです。　ポート表は　次の
ページに示します。　で、各ポートに出力する初
期値は、各 bitが 0 であれば、Lowを 出力しま
す。 １で あれば Hi を 出力します。　よって正
論理です。　pd1 ～ pd4 は　ポートの入出力方
向の設定です。　各 bit に 1 を 書き込めば、出
力ポートになります。　0 を　書き込めば 入力に
なります。　用途に応じて、ポートの　入出力の
方向や　初期値を　決めて下さい。

　次は、周辺回路の初期化ですが、ここで呼ん
でいるのは、ＩＯＣS内の初期化関数です。

Port.1

b0

P1_0

b1

P1_1

b2

P1_2

b3

P1_3

b4

P1_4

b5

P1_5

b6

P1_6

b7

P1_7

Port.3

b0b1b2b3

P3_3

b4

P3_4

b5

P3_5

b6b7

P3_7

Port.4

b0b1b2

P4_2

b3b4b5

P4_5

b6

P4_6

b7

P4_7

Port.A

b0

PA_0

b1b2b3b4b5b6b7

13 14 15 16 17 18 19 20

2 11109

1264 1

3

Port.1

b0b1

P1_1

b2

P1_2

b3

P1_3

b4

P1_4

b5

P1_5

b6

P1_6

b7

P1_7

8 11109 12 1413

Port.3

b0b1b2b3b4b5b6b7

P3_7

1

Port.4

b0b1b2b3b4b5b6

P4_6

b7

P4_7

3 5

Port.A

b0

PA_0

b1b2b3b4b5b6b7

2

R8C/M110AN R8C/M120AN

P1_4 ～ P1_6は 通信 PGM書き込みで使用

P4_6、P4_7は 水晶で使用

PA_0は /RESET で 使用

　最初の adc_init 関数は、A/Dコンバータの 初
期化処理です。　引数の 下位 8bitの値に より
使用する A/Dコンバータの足ピンを 指定できま
す。　詳細は R8CM1_IOCS_ADC.a30 を　参照し
て下さい。　尚、A/D変換に使用できる足ピンの
一部が、シリアル通信にも使われているので
多重初期化に ならないように注意して下さい。
　重なっているポートは　p1_4 です。
(AN4であると共に、TxD でも あります。)
因みに　adc_init(0x010F); と adc_init(0x0102)
の２つの初期化ルーチンを 書いてますが、引
数 0x010Fは　M120Aにて A/D入力を ４チャネ
ル設定出来ます。　M110Aは、AN0の 端子が、
無いので、ch.1 ～ ch.3 の　３チャネルとなりま
す。　A/D入力が　１チャネルで良ければ、引数
0x0102 で使用して下さい。　AN1が 入力チャネ
ルになります。

// 周辺回路 初期化
// ---
// adc_init(0x010F); // 内蔵 ADC 初期化
 //(ch.0 ～ ch.3 使用) M120A用
// adc_init(0x0102); // 内蔵 ADC 初期化
 // (ch.1 のみ使用) M110Aで使用した

sio_init(0, 0); // シリアル通信　初期化
// (38400bps, data=8, Parity=Non, stop=1)
timer_init(); // インターバルタイマー初期化
asm(" fset I"); // 割り込み処理 許可

}

　sio_init 関数は、シリアル通信の初期化です。
今のところ、ボーレイトの分周比の関係で
38400bps が　安定した最高値になっています。
38400bps、データ長 8bit、Nonパリティ、1 Stop
bit で使って下さい。　引数は、0、0　です。

timer_init関数は、呼び出すだけで引数は、あり
ません。　
最後の asm("fset I");　は、割り込み許可の　
インラインアセンブラ命令です。

　IOCSのコピー後、やる事は、まだ　ありますが
殆どが　HEW上で 行う事に なりますので、動画
にて　お見せします。

