
実験前に ブザー機能を追加します

　以前、圧電ブザーに、ペットボトルを輪切りした
メガホンを付けて鳴らす実験をしましたが、圧電
ブザーを鳴らす機能を　IOCSに取り込もうと思い
ます。　地味な機能ですが有れば便利です。

　圧電ブザーを 鳴らすパルス信号は　タイマー
周辺回路 TRJ2を 使います。 前回は R8C/M1
10Aを 使用していたので　R8C/M120Aは、上位
互換なので、当然 M120Aでも TRJ2は 使えると
いう事です。　

　但し、TRJ2出力ポートは、M110Aと　M120Aで
は、足ピンの数が異なるので、ピン番号がずれて
きます。 TRJ2のパルス出力端子は　TRJIO端子
で　M110Aの場合： 8 ピンで、M120Aの場合： 13
ピンです。　TRJIO端子に 1kΩの抵抗を入れ 圧
電ブザーの どちらかのリード線を 接続します。　
反対側の リード線を 電源かグランドに 接続しま
す。　右に接続に関わる 回路図を　示します。

圧電ブザーの接続

R8C/M110A

8

　　　　　圧電ブザーの接続

R8C/M120A

1k

11

12

13
1k

TRJIO

TRJIO

　圧電ブザーの赤、黒の色は
気に しなくてもいいです。
　赤黒 逆に 接続しても、音は
鳴ります。

圧電ブザー駆動の IOCS関数

　圧電ブザー駆動の IOCS関数は、以下の物を
考えています。

①　タイマー周辺回路 TRJ2を初期化する関数を
　　用意します。
　　void　init_trj2(void);　　// TRJ2初期化

②　短いビープ音を １回鳴らします。
　　void　beep1(void);　　// 短いビープ音１回

③　短いビープ音を ３回鳴らします。
　　void　beep3(void);　　// 短いビープ音３回

④　音階に準拠した音を指定長 発音する
void sound_on(char *nt, WORD len, BYTE ps);
　　　　nt : ノート名（ 音の高さ ）
　　　　len : ノート長（ 音の長さ ）
　　　　ps : 有効発音長 0 ～ 100 %

⑤　テンポ設定
　　void set_tempo(int tp); 　　// テンポ設定

以上の関数を 用意します。 ファイル名は
R8CM1_IOCS_TRJ2.c と します。

　以前の 101の 動画にて　TRJ2のサブルーチン
を見てみると、単音ですが　平均率の音程を　鳴
らす機能も作ってあったので、そのまま持ってき
ました。

余談：
　IOCSの関数を見た事がある方は、あれっ、今
回は　アセンブラで 作らないのですね。？
と 思われるかもしれません。
　今回の 音を鳴らす処理であれば、さほど処理
速度の高速化を 図る必要がないと 考えたから
です。 確かにアセンブラは　実行速度の チュー
ニングは 出来ますが、作るのは結構面倒ですし
下手すると、バグの温床に なりかねない危険な
言語とも　いえます。　よって、アセンブラと、C言
語は　用途によって 使い分けるのが 好ましいと
思います。

実験１、I/Oポートのアクセス

　最初の実験は、単純な　I/Oポートアクセスの
実験です。　今回は　M120Aを使用するので
右に　M120Aの I/O ポート表を　示します。

　R8Cの I/Oポートは、例えば　Port1を Byte
単位でアクセスする場合は　p1 と記述して ア
クセスします。　例えば、p1 = 0x03; と すれば、
8bit の p1 ポートに 0x03を 出力した事に なり
ます。　逆に　p1ポートから byte単位で入力す
る場合は、sw = p1; と　記述します。
　Port1の b0 に　1 を 出力する場合は　
p1_0 = 1; と記述します。　逆に　スイッチ等が
接続されていて、状態を読み出したい場合は
sw1 = p1_0; と記述します。
　今まで、ごく基本的な部分を説明して無かっ
たので、初心者の方は、ここで躓いていた方も
おられたかも しれませんね。　ごめんなさい。

Port.1

b0

P1_0

b1

P1_1

b2

P1_2

b3

P1_3

b4

P1_4

b5

P1_5

b6

P1_6

b7

P1_7

Port.3

b0b1b2b3

P3_3

b4

P3_4

b5

P3_5

b6b7

P3_7

Port.4

b0b1b2

P4_2

b3b4b5

P4_5

b6

P4_6

b7

P4_7

Port.A

b0

PA_0

b1b2b3b4b5b6b7

13 14 15 16 17 18 19 20

2 11109

1264 1

3

R8C/M120AN

今回の実験は、I/Oポートに　押しボタンスイッ
チ ２個と、LED １個を 接続します。
 　使用するポートは、
20ピン　p1_0 押しボタンSW1 を 接続します。
19ピン　p1_1 押しボタンSW2 を 接続します。
 1ピン　p4_2 LEDを 接続します。
SW1 と SW2 は、プルアップ抵抗 10kΩで Vcc
に接続した状態にして、接点が ONすると Low
に 落ちるようにします。　LEDは 1kΩの電流
制限抵抗を　直列に接続し Vccに 接続して、
出力ポートが　Lowに落ちた時に　点灯するよ
うにします。　ブザーも付けておきます。
　イメージしているのは、SW1が　LEDの点灯
ボタンで、SW2が、LEDの消灯ボタンという事
を 想定しています。　上記のような実験を行う
ために、回路をどのように接続するかと、ソフ
トでどのように制御するかの　実験というか実
習を行います。ソフトは 動画内で入力します。

R8C/
M120A

10

9

8

7

6

5

4

3

2

1

16

17

18

19

20

11

12

13

14

15

1k

Buzz

Vcc

1
0
k

1
0
k

SW1

SW2

Vcc

1
k

注）　I/O以外の部品は書き込んでいません。

実験２、アナログデータ取り込み

　２番目は、アナログ信号を　マイコン内蔵の
A/D変換器を使ってデジタル量子化数（ 数値
データ ）に変換します。　変換した数値データ
を確認のため、パソコンに 文字列データとして
転送します。 パソコンの受け側には TeraTerm
を　使用します。 サンプルレイトは 1秒に 10回
で、行います。　1秒に 100回とか設定すると早
すぎて、テラタームでは、滝のように文字列が
流れて行きます。　逆に １秒に 1回だと、数値
の変化が ゆっくりで とらえにくい感じもします。
　今回は、シンプルな例題という事で、入力は
１チャネルとします。　入力端子は　AN1　19ピ
ンとします。　入力アナログ信号は　可変抵抗
器 両側の端子に Vcc、Gnd を　接続して 可変
抵抗器の中点を　信号源とします。
プログラムは、動画内で 入力します。

実験２、A/D入力

R8C/M120A

Vcc

AN1 19

0
.1

u

参考：
　A/Dコンバータを使う上で、ミリボルト分解能の
アナログ信号を取り込むので、量子化データの
下位 2bit ぐらいにノイズが乗りやすいです。
　対策としては、マイコンの電源を、三端子シリー
ズ電源を 使う　アナログ信号源側にノイズフィル
ターを構成する。後は 例えば　A/D変換を　3回
連続して行い、３回のデータの合計を　３で割る　
平均化を行う事で、ノイズを少なく出来ます。

