
百円R8CマイコンIOCSに I2C機能を 組み込む

　過去の動画にて、R8C/M110Aと　R8C/M120A

の２つに、それぞれ独立して I2C機能を 実現し

ました。

　因みに I2C実装に関わる動画の　タイトル番号

は　M110Aの方が、023：ハード編、024：ソフト編

になってます。　M120Aの方が、036：ハード編、

037：ソフト編になっています。　あと、024の方は

I2Cのプロトコルというか、伝送手順の説明も、し

ています。　興味があれば見て下さい。

　ソースを　よく見比べないと何ともいえませんが

多分、ハード寄りの部分で　互換性のない部分

（ 使用するマイコンの足ピン ）が いくつかあると

思います。、特にM110Aの方が、全部で 14ピン

なので、VCC、GND、RESET端子、水晶発振子

接続端子、モード設定にて、６ピン使用するので

残り　8ピンです。

　プログラム書き込みも含めたシリアル通信に

3ピン使用するので、残り 5ピンです。　で　I2Cで

２ピン使用します。 で、残り ３ピン。　他の空きピ

ンを　アプリで使いたい場合もあるので、そうなる

とかなり厳しいです。　それと、クロック端子を 高

速に動作させるために　同じポートの 他のビット

と　干渉しないようにするために、ポートのビット

構成に条件が伴います。　そのあたりの事を考

えると、やはり足ピンは、全く同じポート構成に

するのは、無理という事で、諦めました。

　アプリの側からは、IOCSの　I2Cのサブルーチ

ンを使用するのは、 M110Aと M120Aにて、同じ

関数名、同じ引数仕様で実現できます。

　よって

足ピンの割り当てに だけ 注意して下さい。

I2Cの信号線のピンアサインは

 R8C/M110A / R8C/M120A

SCL = １番（ p3_7 ）/ 12番（ p4_5 ）

SDA = ８番（ p1_7 ）/ 1番（ p4_2 ）

に、なっています。

★ I2Cのサブルーチンの ソースファイル構成：　（ 以下のモジュールを IOCSに組み込みます。 ）

 I2C_packet.c

 I2C_tport.a30

 I2C_tport_m110.inc

 I2C_tport_m120.inc

上位プログラムから 呼び出す関数群を 実装している。

ハード寄りの下位層アセンブラプログラム。
直接ハードをアクセスする。

ハード寄りのM110Aに特化した部分を マクロ宣言している
宣言ファイル （ C言語でいう ヘッダファイル .Hのような物 ）

ハード寄りのM120Aに特化した部分を マクロ宣言している
宣言ファイル （ C言語でいう ヘッダファイル .Hのような物 ）

cpu_select.inc　により　M110A用、M120A用の　どちらのプログラムを 生成するのかを
判定し 2つの　.inc ファイルを　スイッチして　アセンブルしている。

★　I2C_packet.c 内の関数群を 紹介します。

--

①　void init_i2c_port(BYTE spd); // I2Cポートの初期化、使用前に 必ず１回

　　 　　// 一番最初に呼び出す事。この関数だけ、I2C_tport.a30側に 入っている。

// 転送速度設定： spd = 0: 400Kbps 、spd = 1; 100kbps (凡その速度)

②　BYTE i2C_check_slave(BYTE adr); // 指定アドレスのスレーブ有無確認

// adr = 7bit I2C アドレス、関数値 = 0 スレーブ有り、= 80h スレーブ無し

③　void i2c_write_7b(BYTE adr, BYTE* buf, WORD len); // 7bitアドレス

 // データ書き込み

// adr: 7bit I2C アドレス、buf: データバッファ、len: 送信するデータ長

④　void i2c_read_7b(BYTE adr, BYTE* buf, int len); // 7bitアドレス

// データ読み出し

// adr: 7bit I2C アドレス、buf: データバッファ、len: 受信データ長

　次に出てくる２つの関数は、③の i2c_write_7b で 代用出来るのですが、I2Cデバイス側で、複数の

レジスタを持っている場合に、最初に レジスタアドレス1バイトを 出力し、次に、データを、1バイト

書き込む、あるいは複数バイトの データ書き込みを行う場合に、視認性を良くする目的で 用意しまし

た。

⑤　void i2c_write_7bfix(BYTE adr, BYTE fdt, BYTE ptn, WORD len); // 7bitアドレ

// ス データ書き込み(2) adr: 7bit I2C アドレス fdt: 先頭固定バイト(デバイス

// 内のレジスタアドレス等) ptn: パターンデータ、len: 書き込み個数

// この関数は 最初 fdt 1バイトを出力して パターンデータを 1個、または 同じパ

// ターンデータを複数個 書き込みます。

⑥　void i2c_write_7bfv(BYTE adr, BYTE fdt, BYTE *ptr, WORD len); // 7bitアドレ

// ス データ書き込み(3) adr: 7bit I2C アドレス fdt: 先頭固定バイト(デバイス

// 内のレジスタアドレス等)　ptr: データバッファのポインタ、len: 書き込み個数

// この関数は 最初 fdt 1バイトを出力して バッファ内データを 先頭から順次読み

// 出して 複数個 書き込みます。

　I2Cの 伝送制御手順には、変則的な物が有り、通常の１本の電文は スタートコンディシ

ョンに始まり、ストップコンディションで終わります。　スタートコンディションの次の先

頭バイトが、I2Cのコントロールバイトで、１バイトの b7～b1 が　スレーブアドレス 7bit

で、最下位bitが、Read/Writeを 表しており、1=Read、0=Write です。 変則的な物という

のは、リピートスタートコンディションというものです。　これは、最初 Writeモードで

スタートし、その電文の途中で、リピートスタートコンディションで、Readモードに 変更

するという機能です。　信号の出し方の詳細は、024の動画にて説明しています。　

⑦　void i2c_write_rep_7b(BYTE adr, BYTE* buf, WORD len); // 7bit アドレス

// リピートスタート前半／データの書き込み

// adr: 7bit I2C アドレス 、buf: データ格納バッファ 、len: 書き込むデータ長

// リピートスタートコンディションを出す直前までの 電文 書き込み処理です。

⑧　void i2c_rep_read_7b(BYTE adr, BYTE* buf, int len); // 7bit アドレス

// リピートスタート後半／データの読み出し

// adr: 7bit I2C アドレス 、buf: データ格納バッファ 、len: 読み出すデータ長

// リピートスタートコンディションを 出した後の 電文 読み出し処理です。

　i2c_packet.c の 関数の説明は、以上です。

尚、10ビットアドレスの I2C通信は、一度も使用した事が 無いので省略します。

　I2Cの　通信仕様を説明した書籍に、10bitのアドレス規格がある事を書いてあったので

最初は、用意していましたが、7bitアドレスでも アドレスレンジは 127あるので、

I2Cの２本の信号線に、100台以上のスレーブデバイスを接続するというのは、ファンアウト

（ 信号線のドライブ能力 ）の問題もあり、現実的ではないと 私は考えます。

じゃ、どれくらい接続出来るのと聞かれると、接続するデバイスにも影響を受けるので

ハッキリとは いえませんが、条件が良くて 10台以下のデバイスと考えます。

　そして、今回のI2Cの テストを兼ねた実験ですが、I2Cデバイスで、

データが 分かりやすい物で試すとすると、RTC　リアルタイムクロックが

データが 時刻なので　分かりやすいと判断しました。

それと、RTCへの 時刻の設定、時刻の読み出しは、I2Cの 書き込み、読み出しの

両方のテストになるので好都合と考えました。
　

　I2Cの IOCSへの組み込み 及び、RTCのアクセス処理の プログラム作成等は

地味な作業なので、実験のソフトが、出来た状態で、確認動作の状態を

動画にて紹介する事にします。

