
RTC（時計Unit）に 関わる　補足情報

　前回、左のRTCを使用
しましたが 左のRX8900
に　限らずマイコンに付
ける時計Unit の 使い方
として マイコンの主電源

が OFF状態の時も、RTCの時刻計時機能を　維
持するため、電池や スーパーキャパシタ等の
バックアップ電源機能を持ちます。　左上の Unit
の場合、1Fのスーパーキャパシタを満充電状態
にして、時刻を設定して、時計Unitを I2Cバスか
ら切り離して、１週間後に接続して時刻を読み出
すと正常に時刻を刻んでいました。

　更に長い期間 放置した実験は、した事がない
ので 最大どのくらい持つかは分かりません。　
一応、一週間は持つようです。　

　で、今回の補足情報は、マイコンの 電源ON時
の、初期化処理において、RTCは、計時動作を
続けている場合は、初期化してはならない。
という事です。

　せっかく RTCが、正確な時刻で計時動作を続
けているのに、初期化して 0年 1月 1日 0時 0分
0秒に初期しては、時刻を 計時する意味が ない
という事です。　しかし、かなり長期のバックアッ
プで、電池やスーパーキャパシタが、干上が
っていた場合は、RTCも停止しているので、初期
化処理が必要になります。

　で、今回使用した RTC RX8900には、フラグ　
レジスタに　VLFフラグ　Voltage Low Flag が
あります。　このフラグを最初に読み取り、0
（ 計時動作 継続中 ）で あれば、初期化する必
要は、ありません。　1 に なっていた場合は、初
期化する必要が あります。

0E or 1E Flag Register UF TF AF VLF VDET0 00

UF：　　　Update Flag 時刻更新終了時にセットされます。 0 を書き込む事で リセット

　　　　　　します。　1 は、書き込み出来ません。

TF：　　　Timer Flag タイマーカウンタが、ゼロになった時 1 になります。　0 を書き込む

　　　　　　事で リセットします。　1 は、書き込み出来ません。

AF：　　　Alarm　Flag アラームが発生すると 1 になります。 0 を書き込む事で リセット

　　　　　　します。　1 は、書き込み出来ません。

VLF：　　Voltage Low Flag　本フラグは、以下の２要因で セットされます。

　　　　　　1)　ICの電源電圧が VLOW電圧を下回った時

　　　　　　2)　水晶発振が 約 10ms以上 停止したとき

　　　　　　VLFビットが、1 を示している場合は、全てのレジスタデータの初期化を行って

　　　　　　下さい。　VLF は 0 を書き込むまで、1 を 保持します。

　　　　　　RESETビットには、影響は受けません。　VLOW電圧の検出は常時監視です。

VDET：　　ICの電源電圧が、VDET電圧よりも低下したことを検出して温度補償回路の

　　　　　　　停止を検出保持します。　VDET=1 の時は温度補正が停止した履歴を示し

　　　　　　　0 を 書き込むまで保持します。　RESETビットには、影響は受けません。

RX8900の フラグレジスタ VLF

BYTE init_rx8900(void)
{

BYTE sts, sts2, reg;
BYTE dt[8];

set_timer_10m1(30); // Wait 0.3秒
while(get_timer_10m1() > 0);

reg = 0x0E; // Flag Register Address
sts = get_rtc_reg(SA_8900, reg) & 0x3b; // Flag読込み
sts2 = sts & 0x02; // VLF 絞り込み
if(sts2 == 0) return 0; // 何もせずに 戻る

　以下のソースは、RTC_RX8900_Sub.c 内の　初期化処理　init_rx8900関数の　先頭部分です。
フラグレジスタの　アドレスは、0Eh です。　因みに　I2Cデバイスアドレス SA_8900 は、32h です。
フラグレジスタを 読み込み　b1 の　VLFフラグが、ゼロであるか調べます。
ゼロであれば、時刻の計時処理が　正常に行われている事になり、
初期化処理は行わずに　リターンします。　よって、アプリ側では　init_rx8900初期化関数を、一律

呼び出して
かまいません。

因みに、このVLFの確
認処理は、バージョン
08 の　IOCSから
反映しています。

RTC RX8900の　電源OFF時の癖？

　USBシリアルモジュールから、電源を供給し
ている時、USBケーブルをパソコンから、引き
抜いても、マイコンボードの電源LEDが　点灯
しているので、ビックリされる方が いると思い
ますので、説明しておきます。

　RX8900は、外から電源を供給している時、
外部電源供給端子と　バックアップ電源端子を
Pチャネル MOS-FETにて、ショートさせていま
す。　バックアップの スーパーキャパシタ等に
充電するためだと思います。

　ただし、外部電源と　バックアップ電源を
ショートさせると、外部電源を切断した際に、
バックアップ側から、電流が流れ出るのですぐ
に、停電した事が検出 出来ません。

　よって、定期的に　一瞬FETのスイッチを切っ
て外部電源の 電圧を確認します。　そして停
電を検出した場合、FETのスイッチを切ったま
まにして、バックアップモードに移行します。

　その停電確認の定期的に確認する周期が
ハッキリ分かりませんが、すぐに電源が切れる
場合もあれば、数秒ほどバックアップ電源から
電流が　流れ出てから切れる場合もあるようで
す。

　もしかして私が、RTC基板に 10uFのコンデン
サを　外部電源側に付けていたので、10uFの
コンデンサの放電時間も影響している事が考
えられます。

　この現象については、検討しておきます。

バックライト無し 16x2LCD ドライバ処理

　前回は、有機EL表示器　SO1602を 表示デ
バイスに使用しました。　緑色の視認性のいい
表示器です。　I2Cから使う上でも、安定して通
信を行う事が出来ます。　緑色文字表示の物
で　１個 1,580円で、価格は やや高いです。

　今回は、液晶表示器で、バックライト無しで
16文字 2行表示の　AQM1602Aを　使用してみ
ます。　価格は、足ピン変換基板付きで 780円
です。　8文字2行もあります。　足ピン変換基
板付きキットが、720円です。

　今回作成した　AQM製 LCDドライバモジュール
の名前は、i2c_lcd_aqm_sub.c です。
　実際、ソフトを組んだ感じとしては、一応動きま
すが、やや癖が あります。 左下の画像は、既に
DATE、TIMEを表示してますが、どちらも同じソフ
トで表示できます。　8文字２行の表示器で　8文
字を超える文字列を表示すると左端から、8文字
の表示が でます。　9文字目以降は範囲外で出
ません。　という事です。　それとは別に　この
LCDは、5Vでも 3.3Vでも動作させる事が出来ま
すが、初期化処理にて、電源電圧により　一部
変えないといけないコマンドが あります。　文字
表示のコントラストの設定値を 変える必要があり
ます。　この設定変更を　行わないと文字表示が
見えなくなるか、非常　に薄くかすれる、または文
字表示部分が、黒く　四角く表示され文字が見え
ないという現象が 発生します。　
　因みに、OLED SO1602は、設定の変更なしで
5Vでも 3.3Vでも 表示出来ます。

780円

720円

AQM LCD用ドライバ i2c_lcd_aqm_sub.c

　AQM LCD用の ドライバのソースファイル
i2c_lcd_aqm_sub.c では、初期化処理
aqm_lcd_init関数に　引数が 有ります。

 //********************************
 //** AQM LCD 初期化 **
 //** -------------------------- **
 //** sw : 使用電源電圧選択 **
 //** =0 : 5V **
 //** =1 : 3.3V **
 //********************************
 void aqm_lcd_init(BYTE sw)
 {

aqm_lcd_init関数の引数　sw が、 0 で あれば
電源 5V用で、 1 で あれば　電源 3.3V用で
す。

void aqm_lcd_init(BYTE sw);
　 　// AQM LCD 初期化
void aqm_lcd_txprn1(char *tx);

　// １行目に 文字列表示
void aqm_lcd_txprn2(char *tx);

　// ２行目に 文字列表示

　アプリから主に使用する関数は、以下の３つ
です。

　上記、プロトタイプ宣言は、R8CM12_IOCS.h に
追加されています。　ドライバルーチンの使い方
は、SO1602の時と 殆ど同じです。
　表示画面のチラつきは、有機EL表示器に比べ
液晶表示器は 殆ど無いように見えます。
　液晶表示器は、文字表示の応答速度が、やや
遅いようで、目立たないのかもしれません。

　この i2c_lcd_aqm_sub.c も、IOCS\I2C_Device
フォルダーに　追加しておきます。

視聴者の皆様へ

大変　お待たせしました。

　ここから、I2Cの　I/O　エクスパンダーの話になります。

まずは、今回使用する　MCP23017の事についての説明ですが
過去に、RX220マイコンの　SPI周辺回路を使って MCP23S17を
使った実験を行いました。

　インタフェースが　I2Cか　SPIかの違いだけで、その他の部分
は、全く同じなので、過去の動画の一部分を使い
I/OエクスパンダーMCP23017の説明を　行います。

I/O Exp MCP23017 周辺回路

M
C

P
2
3
0
1
7

1
2
3
4
5
6
7
8
9
10
11
12
13
14 15

16
17
18
19
20
21
22
23
24
25
26
27
28GPB0

GPB1
GPB2
GPB3
GPB4
GPB5
GPB6
GPB7
Vdd
Vss
NC
SCK
SDA
NC

GPA7
GPA6
GPA5
GPA4
GPA3
GPA2
GPA1
GPA0
INTA
INTB

/RESET
A2
A1
A0

Vcc

0
.
1

Vcc

Vcc

SCL

SDA

1K *8

10K *8

I2C_RESET

Vcc

デバイスアドレス
設定用DIPスイッチ

　MCP23S17（ SPI仕様 ）と
MCP23017（ I2C仕様 ）の ピン
アサインの異なる部分を
示します。（ 青表示 ）

　足ピンの 11 ～ 14 までの
４ピン部分が、SPI仕様と、
I2C仕様で異なります。
　I2Cでは、11ピンと 14ピンが
NC 未接続となっています。

ついでに、デバイスアドレス設
定の A2 A1 A0 の A2は、GND
接続で、A1と A0 に 0 ～ 3 の
アドレスが　設定出来る様に
DIPスイッチを 付けました。
　それと　この MCP23x17は 別
途　RESET信号が　必要です。

