
概要

　前回は、I2C I/Oエクスパンダー MCP23017を

バイト単位でアクセスする基本的な アクセス関

数を作成しました。　本来、I2Cインタフェースは

バイト単位で、I2Cデバイスのアクセスを行いま

す。

　よって、ポートにアクセスするバイト単位の

データの　特定の bitだけ書き込んだり、読み出

したりする機能は、I2Cインタフェースでは、

サポートされていません。

　実は マイコン内蔵のポートにおいても CPUコ

アが、周辺回路のI/Oポートを アクセスする単

位は バイトの場合が、殆どです。　それは、

CPUコアと　周辺回路を接続する、データバス

幅が、バイトまたは　ワードが　殆どだからで

す。　よって I/Oポート内の 特定の 1bit だけを

アクセスする機能は バスラインのハードウェア

は 持っていません。 最低 バイト単位なのです。

でも、例えば　R8CマイコンのC言語でのビット操

作の記述で　p1_3 = 1; とか あります。 これは　

ポート１の　bit 3 に １を　入れるという事です。

（ 処理系によっては　p1.3 = 1; とか記述する場

合も あります。）　R8Cマイコンの場合は、この様

なビット操作は、CPUの命令で　存在します。

　R8Cマイコンで なくても　組み込み用マイコンで

あれば　ビット操作命令は、有ると思います。

　これらの命令は、命令実行時 イグゼキュート

サイクル時に、３つの処理を連続的に行う物と思

います。

①　バイト単位で　出力ポート上の値を 一旦

　　CPU内部レジスタに 読込みます。

②　CPUレジスタ上で　１を立てる場合は　OR

　　命令、　0 を書き込む場合は AND命令で 　

　　ビット操作を行います。

③　ビット演算処理した結果を、バイト単位で、

　　読み出した出力ポートに 書き込みます。

④　例えば、出力に設定された　p1のポートに

　　p1 = 1010 0010 が　設定されていたとしま

　　す。　で、p1_3 = 1; を　行う場合を考えて

　　みます。　ちなみに　p1_3 だけが 1 の 状態

　　を考えると　0000 1000 になります。

　　これを、仮に CPU内部レジスタAに入れて

　　おきます。　そして、p1出力ポートの内容を

　　一旦 読み出します。

⑤　内部レジスタAと、 読み出した p1ポートの

　　値とで、OR演算を行い、結果を　内部レジ

　　スタAに置きます。

1 0 1 0 0 0 1 00 0 0 0 1 0 0 0

CPU内部レジスタA p1出力ポート

④

1 0 1 0 1 0 1 0⑤

1 0 1 0 1 0 1 0

p1出力ポートを
一旦読み出し

内部レジスタAと　
OR演算を行う

演算結果を
p1出力ポートに

書き込む

⑥

⑥　そして、内部レジスタAの　演算結果を

　　p1出力ポートに　書き込みます。

　　よって、ビットセット、ビットリセット命令は

　　読込み、演算、書込みの　３ステップが

　　必要という事になります。

0の　ビットを書き込むというか　ビットリセットの

場合も、一応示します。　今度は、p1ポートに

0000 1111 が設定されていて　p1_3に　0 を

書込む場合を示します。

⑦　命令のオペランドからロードされた内部

　　レジスタAの値の １の歩数を取ります。

　　同時に、p1出力ポートの値を 一旦読込み

　　ます。

⑧　内部レジスタAと　p1の値とで、AND演算を

　　行います。

⑨　演算結果を　p1ポートに書き込みます。

CPUの内部回路は分からないので何とも言え

ませんが、多分　命令オペランドから　値を取り

込むと同時に 1 の歩数を取っているかもしれ

ませんね。 ハードで bit反転するのは、

NOTゲートで、済みますからね。

0 0 0 0 1 1 1 10 0 0 0 1 0 0 0

CPU内部レジスタA p1出力ポート

⑦

0 0 0 0 0 1 1 1⑧

0 0 0 0 0 1 1 1

p1出力ポートを
一旦読み出し

内部レジスタAと　
AND演算を行う

演算結果を
p1出力ポートに

書き込む

⑨

1 1 1 1 0 1 1 1

内部レジスタA
１の補数を取る

　何故、ビットセット命令、ビットクリア命令の

動作説明を　行ったかというと、I2Cの I/Oエク

スパンダー MCP23017も、先頭ページで説明し

た通り、ポート内の単独ビットの書き換えは

出来ません。　で、それをソフトで、ビットセット、

ビットリセットを行う場合、基本的に　前述の

ビットセット命令、ビットクリア命令と同様に、一

旦出力ポートの値を読み込んで、AND、OR命

令を行い再書き込みします。　で、当然ですが

400kbps の I2Cシリアル通信でデータをやり取

りするので、一旦読んで書き込むという　二度

手間的な事を I2Cで行うと処理が遅くなるのは

容易に想像が 出来ます。 そして、ビット毎に

8bit分 あるいは 16bit分　連続してビット設定を

行うと 更に遅くなります。

　単純に考えると、1byteまとめてポートに書き

込む場合と比べて、ビット毎に 読んで書いてを

8bit 分 行うと、16倍 時間が　かかります。

　という事で、I2Cのデータアクセスの頻度を多少

でも減らすため、ポートデータの キャッシュメモリ

というか、各ポートに出力したデータの履歴を

保存して、その保存した履歴データを利用して

ポートからの一旦読み出しを廃止して、代わりに

履歴データと　ビット操作を行い書き込む、そして

書込み時　ポート履歴データの更新を行う という

高速化手法を 用いて 今回 MCP23017の ビット

単位のアクセス関数を 作ろうと思います。　時間

は、約半分早くなると思います。

　読み込みに関しては、外部の事象は　いつ更

新されるか分かりませんので、毎回 読み込む必

要が あります。　関数の関数値としては、指定

したポートのビット状態を　１と　0 で返そうと思い

ます。

I/O Exp MCP23017 周辺回路

M
C

P
2
3
0
1
7

1
2
3
4
5
6
7
8
9
10
11
12
13
14 15

16
17
18
19
20
21
22
23
24
25
26
27
28GPB0

GPB1
GPB2
GPB3
GPB4
GPB5
GPB6
GPB7
Vdd
Vss
NC
SCL
SDA
NC

GPA7
GPA6
GPA5
GPA4
GPA3
GPA2
GPA1
GPA0
INTA
INTB

/RESET
A2
A1
A0

Vcc

0
.
1

Vcc

Vcc

SCL

SDA

1K *8

10K *8

I2C_RESET

Vcc

デバイスアドレス
設定用 DIPスイッチ

MCP23017（ I2C仕様 ）の ピン
アサイン
　足ピンの 11 ～ 14 までの
４ピン部分が、SPI仕様と、
I2C仕様で異なります。
　I2Cでは、11ピンと 14ピンが
NC 未接続となっています。
12ピンが SCL、13ピンが SDA
です。

　デバイスアドレス設定の A2
A1 A0 の A2は、GND接続で、
A1と A0 に 0 ～ 3 の
アドレスが　設定出来る様に
DIPスイッチを 付けました。

　それと　この MCP23017は 別
途　RESET信号が　必要です。

MCP23017 複数接続の場合

MCP23017
A2～A0 = 000

PortA 7～0

PortB 7～0

MCP23017
A2～A0 = 001

PortA 7～0

PortB 7～0

MCP23017
A2～A0 = 010

PortA 7～0

PortB 7～0

R8C/M120A
マイコン

Vcc+

SCL

SCL

SCL

SDA

SDA

SDA

/Reset

/Reset

/Reset

SCL

SDA

/Reset

　I2Cバスに　３個 MCP23017を接続した場合を
想定して接続図を描きました。
　R8C/M110Aで使用する場合は、下の図の左側
110A の 端子番号を使用して下さい。
　因みに　/Resetで使用しているポートは、
p1_3で　110A、120Aで共通ですが、端子番号が
異なります。

SCL

12

1

17

12

13

18

12

13

18

12

13

18

R8C/M110A
マイコン

SCL

SDA

/Reset

1

8

12

SDA
/Reset

p3_7
p1_7
p1_3

1
8
12

p4_5
p4_2
p1_3

12
1
17

Port名 Port名Pin No Pin No

R8C/M110A R8C/M120A
信号名

I2c_Io_Expander.c 内の 関数群

void ioexp_init(BYTE adr); // MCP23017 初期化
void ioexp_pa_dir(BYTE adr, BYTE ptn); // MCP23017　ポートＡ 入出力方向の設定
void ioexp_pb_dir(BYTE adr, BYTE ptn); // MCP23017　ポートＢ 入出力方向の設定
void ioexp_pa_out(BYTE adr, BYTE dat); // MCP23017　ポートＡ バイトデータ出力
void ioexp_pb_out(BYTE adr, BYTE dat); // MCP23017　ポートＢ バイトデータ出力
BYTE ioexp_pa_in(BYTE adr); // MCP23017　ポートＡ のデータ取り込み
BYTE ioexp_pb_in(BYTE adr); // MCP23017　ポートＢ のデータ取り込み

// I/O エクスパンダー ビット処理関数
void ioexp_pa_setbit(BYTE adr, BYTE bit_no); // ポートＡ 特定の bitを 1にする
void ioexp_pa_clrbit(BYTE adr, BYTE bit_no); // ポートＡ 特定の bitを 0にする
void ioexp_pb_setbit(BYTE adr, BYTE bit_no); // ポートＢ 特定の bitを 1にする
void ioexp_pb_clrbit(BYTE adr, BYTE bit_no); // ポートＢ 特定の bitを 0にする
BYTE ioexp_pa_getbit(BYTE adr, BYTE bit_no); // ポートＡ 特定の bitを 0 or 1で 取り出す
BYTE ioexp_pb_getbit(BYTE adr, BYTE bit_no); // ポートＢ 特定の bitを 0 or 1で 取り出す

void ioexp_reset(void);// I2Cデバイス用 リセット出力
は、R8CM1_IOCS_I2C_packet.c 内に 入っています。

因みに、赤文字の ADRは　MCP23017の デバイスアドレスの 0 ～ 7 です。
bit_no は、8bit データ内の bit指定の番号 0 ～ 7 です。

MCP23017 複数接続時のプログラム

　一つ 記載してませんでしたが、I2Cバスに　
接続するデバイスにおいて、リセット信号を必
要とする場合は、マイコンの パワーオン リセッ
ト信号を　接続してはいけません。

　マイコンの初期化処理において、1bitの出力
ポートから I2Cデバイスのリセット信号を 出し
て下さい。 100us程度のパルス幅の Lowアク
ティブ信号として出力して下さい。
理由：
1.　今回の R8Cマイコンの CPUリセット信号は
　　CRの積分回路で、ドライブ能力が弱いので
　　長く引きまわすと ノイズを拾う恐れが　ある
　　事です。
2.　電源ONでは、無いけれど 場合により 再初
　　期化で　周辺機器の リセットを行う事も　考
　　えられるからです。

今回は、 p1_3 から出す事にしました。

1.0 初期化
　1.1　最初に、I2Cデバイスに　リセット信号を
　　　　出します。

ioexp_reset(); // I2Cデバイス用 リセ
ット出力（ 必要のある時のみ使用する ）

　1.2　接続されている I/O エクスパンダ　MCP
23017の個数分 初期化処理を 行う。
ioexp_init(0); // I/Oエクスパンダ

１号 初期化
ioexp_init(1); // I/Oエクスパンダ

2号 初期化
ioexp_init(2); // I/Oエクスパンダ

3号 初期化
引数は、MCP23017の デバイスアドレス設
定の A2、A1、A0 端子の 設定値です。

　

1.3　各 I/O エクスパンダの ポート入出力の
設定例を 示します。

ioexp_pa_dir(0, 0xFF); // デバイス
アドレス 0 の ポートAの設定　全 bit 入力

ioexp_pb_dir(0, 0x00);　// デバイス
アドレス 0 の ポートBの設定　全 bit 出力

ioexp_pa_dir(1, 0xF0); // デバイス
アドレス 1 の ポートAの設定
上位 4 bit 入力、下位 4 bit 出力

ioexp_pb_dir(1, 0x0F);　// デバイス
アドレス 1 の ポートBの設定
上位 4 bit 出力、下位 4 bit 入力

ioexp_pa_dir(2, 0xAA);　// デバイス
アドレス 2 の ポートAの設定 bit入出力の
設定： in、out、in、out、in、out、in、out

ioexp_pb_dir(2, 0x55);　// デバイス
アドレス 2 の ポートBの設定 bit入出力の
設定： out、in、out、in、out、in、out、in

　どうでしょうか。　入出力設定の　イメージは、
掴めたでしょうか。？

2.0　次は、デバイス番号 0 の ポートA、ポートB
の データ入出力の例を　示します。

 sw = ~ioexp_pa_in(0); // データ入力
デバイス 0 の ポートAから バイトデータを
読み込み　~ は bit反転を 行い 変数 swに
代入します。
~ は 負論理のデータを 正論理に　変換す
る時に 使用します。　逆も 出来ます。

ioexp_pb_out(0, sw); // データ出力
バイト変数 sw の内容を、デバイス 0 の
ポートBへ　出力します。

一つのポート内に入出力が混在している場合

2.1　一つのポートが、全ビット入力、あるいは
全ビット出力の場合は、考えやすいですが
一つのポート内に　入力の bit と、出力の
bit が、混在している場合は、どうなるので
しょうか。？　以下の入出力設定の場合で
説明します。
ioexp_pa_dir(1, 0xF0); // デバイス
アドレス 1 の ポートAの設定
上位 4 bit 入力、下位 4 bit 出力
sw = ioexp_pa_in(1); // データ入力
で、デバイス１の　ポートAを読み込むと
上位 4 bit は、入力なので、外部の信号を
取り込む事が　出来ます。　下位 4bit は、
出力ポートに設定されているので、ポートA
の出力レジスタに 設定されている内容を
読み込む事に　なります。　例えば 0xAAを

　　　 直前に ポートAに出力している場合は、
　　　 読み出すと 下位 4bit は 1010です。

2.2　左の　デバイス１　ポートAの設定で、出力を
行うと　どうなるでしょうか。？

ioexp_pa_out(1, sw); //デバイス１
の ポートAへの出力
sw の 下位 4bit が、ポートAへ出力
されます。 では、上位 4bit は どう
なるのでしょうか。？
変数 sw に何らかのデータが 設定され
ていても 信号は出力されません。
上位 4bit は 入力ポートに設定されて
いるので、Hiでも　Low でもない状態
ハイ インピーダンス状態になります。

ハイインピーダンス状態になる可能性
の有る端子は、10kΩぐらいの抵抗で
Vccに プルアップしておく方が　安全
です。

bit 単位でアクセスする関数の使い方

　その前に、I/Oポートアクセスを　イメージしや
すいように、I/Oポートに接続する物を 仮に設
定しておきます。　

b7

I/O Exp
Adr=0
Port A

b6

b5

b4

b3

b2

b1

b0

出力

出力

出力

出力

入力

入力

入力

入力

RELAY_1

LED_2

LED_1

L_LIM_SW

H_LIM_SW

High Active

Low Active

Low Active

Low Active

Low Active

 I/Oポートの初期化：
ioexp_pa_out(0, 0x30); // ポート出力

仮データ（ 0011 0000)　
ioexp_pa_dir(0, 0x0F); // 入出力設定

上位 4bit 出力、下位 4bit 入力

信号名で bit番号を 設定出来るように
#define で 宣言する。
#define RELAY_1 7 // RELAY_1の bit_no
#define LED_2 5 // LED_2の bit_no
#define LED_1 4 // LED_1の bit_no
#define H_LIM_SW 1 // H_LIM_SWのbit_no
#define L_LIM_SW 0 // L_LIM_SWのbit_no

RELAY_1、LED_2、LED_1をアクティブ化する。
ioexp_pa_setbit(0, RELAY_1);// Hi出力
ioexp_pa_clrbit(0, LED_2); // Low出力
ioexp_pa_clrbit(0, LED_1); // Low出力

RELAY_1、LED_2、LED_1を ノーマル化する。
ioexp_pa_clrbit(0, RELAY_1);// Low出力
ioexp_pa_setbit(0, LED_2); // Hi出力
ioexp_pa_setbit(0, LED_1); // Hi出力

上限、下限の リミットスイッチの読み出し
sts = ioexp_pa_getbit(0, H_LIM_SW);
sts = ioexp_pa_getbit(0, L_LIM_SW);

bit 単位でアクセスする 別の方法

　実は、終り近くになって、別の方法を　思いつ
きました。　これも　I/Oポートの　キャッシュと
いうか、マイコンの RAM上に　ビットフィールド
の構造体を用意して、各ビットに分かりやすい
名前を付けて、RAM上のポートキャッシュを
ビット単位で設定してから、バイト単位で 一発
でポートに出力する方法です。
ビットフィールドの構造体は、以下のように
宣言します。

typedef struct {
unsigned char relay_1: 1;
unsigned char pad1: 1;
unsigned char led_2: 1;
unsigned char led_1: 1;
unsigned char pad2: 2;
unsigned char h_lim_sw: 1;
unsigned char l_lim_sw: 1;

} IoX0_PA; // データ型の名前

使う時は、まず ビットフィールド変数の宣言です。
　　IoX0_PA　　iox0_pa;//　変数の宣言

　　// 各出力項目を設定する
　　iox0_pa.relay_1 = 1;
　　iox0_pa.led_2 = 0;
　　iox0_pa.led_1 = 0;

　　// バイト単位で ポートAへ書き込む
　　ioexp_pa_out(0, (BYTE)iox0_pa);
　ビットフィールドは、各Cコンパイラ処理系に
於いて、型宣言のビットフィールド行の 上からの
並びが、b7 b6 b5　となっているのか、 b0 b1 b2
となっているのか　方言がある様なので、実際に
コンパイラで確認する必要が　あります。

　逆に、１バイト読み出して 各ビットを RAM上で
調べる事も可能と思われます。　これが、うまく
行くならば　可視性のいいコーディングで、かなり
実行速度アップが 図れます。

