
R8Cマイコンでビットフィールドは 使えるか

　前回の宿題で、R8Cマイコン上で、ビット

フィールドは使えるか。　また、構造体中のビッ

ト並びは、上から b7、b6、b5 になるのか、b0、

b1、b2に なるのか確認する事になってました。

　出来れば、構造体、共用体、ビットフィールド

等の 基本の話を　したい気もしますが、かなり

長くなりそうな気がしますので、また別の機会

に回します。　今回は　I/Oポートの バッファと

しての ビットフィールドに的を絞った話と しま

す。

　まず、最初に結果から報告します。

ビットフィールドの先頭行の bitは、バイトデー

タ内の　最下位ビットでした。　その方が　都合

がいいかなとも思いました。　例で　示します。

b7

I/O Exp
Adr=0
Port A

b6

b5

b4

b3

b2

b1

b0

出力

出力

出力

出力

入力

入力

入力

入力

RELAY_1

LED_2

LED_1

L_LIM_SW

H_LIM_SW

High Active

Low Active

Low Active

Low Active

Low Active

この前回のI/Oポート表を　ビットフィールド構造
体に 並べると、メンバーが 上下逆になります。

 typedef struct {
BYTE l_lim_sw: 1; // b0 (最下位)
BYTE h_lim_sw: 1; // b1
BYTE pad2: 2; // b2-b3
BYTE led_1: 1; // b4
BYTE led_2: 1; // b5
BYTE pad1: 1; // b6
BYTE relay_1: 1; // b7 (最上位)

 } EX_PORT_A; // bit field データ型名

余談ですが

　何故、コンパイラによって ビットフィールドの

並びが違う事があるのか。に関しては、かなり

古い話ですが、MS-DOSの時代に Lattice-Cと

いう　Cコンパイラで開発されたアプリが ありま

した。

　その後、MS-Cが 出てきてコンパイラの

置き換えの話が、出て来ましたが、データファ

イルに互換性が無い事が分かり、その原因は

構造体中のビットフィールドの並びが異なる事

だったようです。　そのプロジェクトには、私は

関与して無かったので詳細は分かりません。

　昔、そんな事があったという話です。

その他、CPUの違いにより、リトルエンディアン

ビッグエンディアン、バイトマシン、16bitマシン、

32bitマシンで、メモリアライメントの問題で、

障害が 発生する場合が あります。

　R8Cの場合は、ビットフィールド宣言の 先頭行
は、b0から順に並ぶ事が　分かったので、I/O
ポート表も　上の行から b0、b1、b2の 順に 書い
ていく方が 良さそうですね。

　因みに どのように調べたかというと、プログラ
ムで示します。　前ページの ビットフィールド構造
体の変数宣言を 行います。　構造体が、1byteに
納まっているかは、sizeof演算子を　用いて確認
します。　1 byte である事を 確認しました。

 UX_PORT_A Uxpa;　// ビットフィールド宣言

sio_prin("Size = ");
sio_prin_word_dec(sizeof(Uxpa), 1);
// bit fieldの byte サイズ

　ビットフィールド構造体型名が 前のページと
異なる事に気付いた方もいるかもしれません。
その理由を　次のページで説明します。

　ビットフィールド構造体変数の 中身を 16進数
で、テラタームで表示しようと思いましたが、
byte変数を 16進数２文字でテラターム側で
表示する関数に　サイズ1byteの ビットフィール
ド構造体変数を　byteでキャストして渡そうとし
ましたが、不正な CAST宣言という事でエラー
になりました。　予測して いましたが、やはりと
いう感じでした。　ビットフィールド構造体変数
を　byteデータとして 引数に渡すため union と
いう 型宣言を 追加します。　この共用体宣言
を 行った関係で　データ型名が変わりました。

typedef union { // 共用体宣言
EX_PORT_A xa; // bit field変数名
BYTE byt; // byte 変数名

} UX_PORT_A; // 共用体 型名

 UX_PORT_A Uxpa; // bit field & byteの　
　　　　　　　　　　　 変数名 宣言

　共用体 union とは、どのような宣言なのかと
いうと、
EX_PORT_A xa; // bit field変数名
BYTE byt; // byte 変数名
　xa という変数と　byt という変数は、全く同じ
アドレスに配置されます。 これを別の表現をする
と、一つの 1byteの　データに　xa と　bytの ２つ
の　名前が付いているという事です。
　ビットフィールドでアクセスする時は Uxpa.xa、
関数の引数に byte データで　渡す時は
Uxpa.byt と　言う事に なります。

　Uxpa.xa.relay_1 = 1;
// ビットフィールド relay_1 に 1を設定

　sio_prin_byte_hex2(Uxpa.byt);
　　　　　　　　　　　// byteで 引数を渡す

　ちょっと面倒ですが、こうすれば、ビットフィール
ドのデータを　バイトデータとして　ポートへ出力
出来ます。 逆にポートから読出しも 可能です。

ソースを部分的に小出しにしたので、全体像が
分かり難いところもあったと思います。　一連の
流れを お見せします。

typedef struct { // bit field 構造体 宣言
 BYTE l_lim_sw: 1; // b0 (最下位)
 BYTE h_lim_sw: 1; // b1
 BYTE pad2: 2; // b2-b3
 BYTE led_1: 1; // b4
 BYTE led_2: 1; // b5
 BYTE pad1: 1; // b6
 BYTE relay_1: 1; // b7 (最上位)
} EX_PORT_A; // bit field データ型名

typedef union { // 共用体宣言
 EX_PORT_A xa; // bit field変数名
 BYTE byt; // byte 変数名
} UX_PORT_A; // 共用体 型名

 UX_PORT_A Uxpa; // bit field & byte変数

void main(void)
{
 init_proc(); // 初期化処理
 sio_recv_wait(); // １文字 受信待ち

 sio_prin("Size = ");
 sio_prin_word_dec(sizeof(Uxpa), 1);
 // bit field & byte変数の byteサイズ
 sio_put_crlf(); // 改行

 Uxpa.xa.relay_1 = 1; // xaで bit fieldの
 　　//名前指定で　relay_1 に 1を 設定

 sio_prin("RELAY_1 = 1 : Hex=");
 sio_prin_byte_hex2(Uxpa.byt); // bytで
 // バイト指定で 引数を渡す　
 sio_put_crlf(); // 改行

　で、上記プログラムを実行して　テラタームに
どのように表示されるかを　お見せします。

　上のテラタームの画面ですが、Size = 1 は
ビットフィールド宣言した変数が 1 byteのサイ
ズに収まっている。　という事です。
　仮に　あと 1 bit ビットフィールドを追加すると
2 byte になります。

　そして　ビットフィールドの relay_1 にだけ 1を
設定して、ビットフィールド変数の内容を
16進数表示を行うと　80h という事で、 b7だけ
が、1 に　なっています。
　RELAY_1は、最上位ビットの b7 なので、これ
で正解です。

　前ページで、使用したビットフィールド構造体を
バイトデータとして扱える　Uxpa.byt を　使って
I/Oポートをアクセスする コーディングサンプルを
表示します。

R8Cマイコン内部 I/Oポートのアクセス
 p1 = Uxpa.byt;
 // ポート１に バイトデータ出力する

 Uxpa.byt = p1; // p1ポートの状態を
 // Uxpa.bytに 代入する

I2Cバスに接続した　MCP23017のポートアクセス
 ioexp_pa_out(adr, Uxpa.byt);
 // MCP23017の ポートAに、Uxpa.bytの
 // 内容を 出力する

 Uxpa.byt = ioexp_pb_in(adr);
 // MCP23017の ポートBの状態を、
 // Uxpa.byt に 代入する

R8Cマイコンの データ用内蔵ROMアクセス

　R8Cマイコンの データ用内蔵ROMアクセスの　話の前に
R8C/Mマイコンの メモリーマップをお見せします。
メーカーのデータシートの 画像コピーです。　

青の四角で囲った範囲が、データ用 内蔵ROMの部分です。
アドレス　3000h ～ 37FFh の 範囲です。 全体で 2kbyte ですが
前半 1Kが　ブロックA　、　後半 1Kが　ブロックBになってます。

　データ用内蔵ROMの　アドレスは　3000h ～
37FFh の 範囲です。 全体で 2kbyte ですが前
半 1Kが　ブロックA　、　後半 1Kが　ブロックB
になってます。
　ブロックA　ブロックBとは、データを 消去する
時の　ひとまとまりの単位の様です。
で、消去できる回数は、ブロック毎に　最大
10000回程度 との 事です。
 　データを書き込む際にも、独自のシーケンス
が、あります。　EW1、サスペンドモードとか、
メーカーのデータシートに書いてあります。

　とはいえ、データシートの ディテールフローを
元に　プログラムを作成したので、細かい意味
は　いまいち理解していません。　それと　この
書き込みプログラムを作成してから、 9年ほど
経過している事もあり、だいぶ忘れてます。
　使い始めると　多少 思い出すかも しれませ
ん。

　R8Cマイコンの データ用内蔵ROMの　書き込
みプログラムは、以下のモジュールで出来てい
ます。

 EPR_defParam.c

 EPR_defParam.h

R8CM1_IOCS_EEPROM.a30

　で、今回は、出来るだけ簡単に使えるように
EPR_defParam.c を 用意しました。　より汎用的
に細かく使う場合は、IOCS_EEPROM_sub.c を
直接アクセスして下さい。　EPR_defParam.c が
サンプルプログラムになると 思います。
EPR_defParam.c 使い方は、次に説明します。

IOCS_EEPROM_sub.c

　組み込みマイコンを使用した システムでは、
運用時に、状況に応じて パラメータを 変更す
る場合があります。　で、組込みプログラム内
に、固定的にパラメータを持ってしまうと、パラ
メータを 変更する必要が生じた時に、毎回プロ
グラムを書き直す事になるので、不自由です。
　現場で間違って別のプログラムを書き込む等
の　トラブルが起こる場合もあります。

　よって、運用プログラムにより、パラメータを
書き込んだ小さなファイルを 受信して、データ
用ROMに、書き込む方法が、一般的と思いま
す。

R8C/Mマイコンの場合は　RAM容量が 小さい
（1280byte）ので、パラメータ構造体の サイズ
は、大きくても　500byte 以下に して下さい。
　データROMは、1kbyteのブロックが ２本あり
ますが、 片方のブロックで十分という事に

 EPR_defParam.c の使い方　
　なります。　R8C/Mシリーズのマイコンは、足ピ
ン数が少ないので、あまり複雑な制御は しない
と思います。　という事で、RAM上に　パラメータ
構造体を宣言して、それを、データROMに　二次
記憶的に、書き込んだり、読み出したりする事に
なります。　書き込み回数の制限は、約 10000回
ですが、読み出し回数は、制限は有りませんの
で、CPUリセット後に、毎回　起動時の初期化処
理で パラメータ構造体を　データROMから RAM
へ構造体変数を　転送する事になります。
　よって、パラメータの管理は　全てのパラメータ
を １本の構造体変数に、入れ込んでおく 方が、
管理が楽です。

　今回は、EPR_defParam.h 内に　データROMに
読み、書きする構造体変数の　スケルトンを用意
しました。　パラメータを入れ込む箱を用意した形
に、なってますので、ROMに書き込んだり、読み
出したりが、簡単に出来ます。

 EPR_defParam.h の構造体 宣言

// *** 構造体データ宣言 *** （ 共通部分 ）
// ===
typedef struct {

WORD id; // 識別子
BYTE pgm; // プログラム番号
BYTE ver; // バージョン番号
WORD dt_siz; // データブロックサイズ
WORD pad; // 予備

} EPR_HEADER; // ROMパラメータ ヘッダー

// ★　構造体データ宣言　★（ 個別データ部分 ）
// （ プロジェクトにより、変わる部分 ）
// ===
typedef struct {

// ** 用途に応じて 必要なデータを宣言 **
BYTE buf[128]; // 仮の データ

} EPR_DATA; // ROMパラメータ データ宣言部

　左の　構造体宣言で、EPR_HEADER
は、データの前に付ける、ヘッダー情報
です。

　EPR_DATA は、パラメータ データを格
納する構造体です。 BYTE　buf[128];
は、ダミーで 入れているデータですの
で、実際の パラメータデータに 入れ替
えて下さい。

　あと、この２つの構造体を　取り込む
全体の構造体が、１つありますが、次
のページに示します。

EPR_defParam.h の 内容　前半 2/3

// *** 構造体データ宣言 *** （ 全体 ）
// ===
typedef struct {

EPR_HEADER hd; // ROMパラメータ ヘッダー
EPR_DATA dt; // ★ ROMパラメータ データ部

 WORD sum; // パラメータ チェック用サム値
} EPR_PARAM; // ROMパラメータ　全体

　 　左の EPR_defParam.h 内の 構造体
宣言で、EPR_PARAM は、データROM
に格納されるデータの 構造体宣言で
す。

　その下の　EPR_defParam.c 内　先頭
の　EPR_PARAM 型の変数　Epr を 実
際使う事になります。

　データROMに格納するデータ　Epr

 上記のような、データ構造になります。

//　ROMパラメータ構造体 変数宣言
// ---
EPR_PARAM Epr; // ROMパラメータ全体

EPR_defParam.h の 内容　後半 1/3

EPR_defParam.c の 内容　先頭 構造体変数 宣言

EPR_HEADER 8byte

EPR_DATA
500byte 以内

サム値　2byte

// ★★★　EPR_defParam.c ★★★
void param_make(void); // パラメータデータ 仮生成
int param_eep_load(void); // パラメータを データROMから 呼び出し
int param_eep_save(void); // パラメータを データROMへ 書き込み
void param_dump(void); // パラメータ Eprの内容を テラタームに

// ダンプ表示します。
static WORD pac_calc_sum(BYTE *buf, int cnt); // 内部関数 サム値計算

R8CM12_IOCS.h 内の EPR_defParam.c 内関数の プロトタイプ宣言

　 EPR_defParam.c 内の 関数で、データROMをアクセスする関数は、
param_eep_load 関数と、 param_eep_save関数の ２つです。

　param_eep_load 関数は、ROM内のデータを 読み出し 構造体変数 Eprに　転
送する関数です。　この 関数は　ROM上の絶対番地から　RAM上の Epr変数
に、２つのポインターを使って　データのメモリ間コピーをしているだけです。

　param_eep_save関数は、構造体変数 Epr の内容を、ROM内に　格納する関
数です。　ROM上にデータを書き込む場合は、ややこしい特殊な 書き込みシー
ケンスが　あります。　今回の作業の中で　これが　一番厄介な 作業でした。

// パラメータをフラッシュメモリから読み込む
int param_eep_load(void)
{
 BYTE *ptr;

 ptr = (BYTE*)EEP_A_ADDRESS; // ROM ブロックAの 先頭アドレス 0x3000

 mem_copy((BYTE*)&Epr, ptr, sizeof(Epr));　// メモリ間転送処理

 if(Epr.sum == pac_calc_sum((BYTE*)&Epr, sizeof(Epr) - 2))
 return 1; // パラメータ正常読み出し（ サム値 一致 ）

 return -1; // 読み出しパラメータ異常 (サム値 不一致)
}

　説明していませんでしたが、mem_copy関数の下に if文が　あり　Epr.sum と
pac_calc_sum関数の関数値を 比較してますが、これは　データが壊れていな
いかを調べる一つの方法で、サムチェックといいます。　サムチェックは、メモリ
上の　データあるいは、プログラムが　壊れていないかを 調べる手法です。
　やり方は単純で、メモリ上のデータを、先頭から byte単位で　足し算を行い
格納されているサム値の手前で　止めます。そして　格納されているサム値と
合計値が、一致するか調べる手法です。

int param_eep_save(void)
{
 BYTE *ptr;
 int sts;

 ptr = EEP_A_ADDRESS; // ポインタに データROM ブロックAの アドレスを設定する
 Epr.sum = pac_calc_sum((BYTE*)&Epr, sizeof(Epr) - 2); // サム値計算

sts = eep_block_erase(EEP_A_ADDRESS); // EEPROM Block1 消去
if(sts == 0) sio_print("* ROM Erase Error.");

sts = eep_write_data(EEP_A_ADDRESS, (BYTE*)&Epr, sizeof(Epr)); // データ ROM書込み
if(sts == 0) sio_print("* ROM Write Error.");

 return 1;
}

　最初に、ptr に ROM先頭アドレスを設定し、サム値の計算をして、構造体最後の Epr.sum に
書き込みます。　書き込み処理は、① データROM ブロック１の消去　②　データROMに データを
書き込みの2つです。 先頭に eep が付く ２つの関数は IOCS_EEPROM_sub.c 内に実態が あります。
IOCS_EEPROM_sub.c の内容は　メーカーのデータシートを見ても　難解です。

　では、今回は　EPR_defParam.c の　関数を
使って、パラメータデータを　データROMに
書いたり　読んだりする実験を　行います。
　

