
I2Cで、使用している　I/O ポートの確認

　R8C/Mシリーズの　IOCSの I2Cに関わるソー

ス プログラムは、以下の構成になります。

　因みに IOCSは　当方で作成した　R8C/Mシ

リーズ用の I/O周りの サブルーチン集です。

 R8CM1_IOCS_I2C_packet.c

 R8CM1_IOCS_I2C_tport.a30

 I2C_tport_m110.inc

 I2C_tport_m120.inc

cpu_select.inc

　cpu_select.inc は　R8C/M110Aか R8C/M120

Aを 選択するための定義ファイルです。

　その下の　I2C_tport_m110.inc と　I2C_tport_

m120.inc が M110と　M120で　異なる

I/Oポートを 宣言したファイルです。

 .include cpu_select.inc

.if MPU_SEL==2
 .include i2c_tport_m120.inc ; M120A用マクロ
.ELSE
 .include i2c_tport_m110.inc ; M110A用マクロ
.ENDIF

　 R8CM1_IOCS_I2C_tport.a30 先頭部分のコー

ディングです。　ここで、m120 か　m110かを　切

り替えています。

　次に　I2C_tport_m110.inc と　I2C_tport_m110.

inc 内 先頭の　マクロ定義を お見せします。

SCL_L　SCL信号を Lowに する。

SCL_H　SCL信号を Hiに する。

SDA_L　SDA信号を Lowに する。

SDA_H　SDA信号を Hiにする。

SDA_IN　 SDAを 入力ポートにする。

SDA_OUT　SDAを 出力ポートにする。

; R8C/M110A 用 I2C port宣言
; -------------------------------------
SCL_L .macro

mov.b #00h, p3 ; SCL = 0 (p3_7 = 0)
.endm

SCL_H .macro
mov.b #80h, p3 ; SCL = 1 (p3_7 = 1)
.endm

SDA_L .macro
bclr p1_7 ; SDA = 0 (p1_7 = 0)
.endm

SDA_H .macro
bset p1_7 ; SDA = 1 (p1_7 = 1)
.endm

SDA_IN .macro
mov.b #05Eh, pd1 ; p1_7 = In port
.endm

SDA_OUT .macro
mov.b #0DEh, pd1 ; p1_7 = out port
.endm

; R8C/M120A 用 I2C port宣言
; -------------------------------------
SCL_L .macro

 bclr 5, rmch_p4 ; SCL = 0
 mov.b rmch_p4, p4 ; Port4 に 反映
.endm

SCL_H .macro
 bset 5, rmch_p4 ; SCL = 1
 mov.b rmch_p4, p4 ; Port4 に 反映
.endm

SDA_L .macro
 bclr 2, rmch_p4 ; SDA = 0
 mov.b rmch_p4, p4 ; Port4 に 反映
.endm

SDA_H .macro
 bset 2, rmch_p4 ; SCL = 1
 mov.b rmch_p4, p4 ; Port4 に 反映
.endm

SDA_IN .macro
mov.b #20H, pd4 ; Dir.SCL=1 , Dir.SDA=0
.endm

SDA_OUT .macro
mov.b #24H, pd4 ; Dir.SCL=1 , Dir.SDA=1
.endm

; rmch_p4 は RAM上の Byte変数です。

　という事で、M110Aの方が、RAM変数を使っ

てない分、シンプルですね。　それと、M110Aで

は、I2C と　SPI を　同時に使用しない。 という

事にしたので、I2C と　SPIで、ポートが重複定

義してないか、心配する必要も　なかったです

ね。

　まず、M110Aにて　I2Cで使用する足ピンは、

先ほどのソースを参考にすると

SCL = p3_7 で　SDA　= p1_7 です。

特に、高速性が必要な　クロック信号は M110

Aの場合　p3_7 を使うしか無いですよね。

　よって　SPIの場合も　SCK信号は　p3_7 に

なります。　あと、MOSI、MISO、SS0、SS1 は

空いているピンに割り当てます。　特に、SS0、

SS1は、早さの要求は　殆どないです。

それと、I2Cの様に　動的に信号の方向を　切

り替える事は無いので、その分は　楽です。

　

Port Pin 用途等

p1_1 14 空き

p1_2

p1_3

p1_4

p1_5

p1_6

p1_7

p3_7

13

12

11

10

9

8

1

空き

空き

TxD

RxD

PgmRxD

SDA

SCL

R8C/M110A　I2Cの場合

Port Pin 用途等

p1_1 14 MOSI

p1_2

p1_3

p1_4

p1_5

p1_6

p1_7

p3_7

13

12

11

10

9

8

1

SS0

SS1

TxD

RxD

PgmRxD

MISO

SCK

R8C/M110A　SPIの場合

　上の、R8C/M110Aの　I/Oポート表は、左側が

I2Cで、右側が　SPIです。　SPI側もポート（端子）

を　決めました。　当初の取り決め通り、SS信号

は、SS0 と　SS1 の　２つです。

SPIの場合　p1ポートには、４本の信号線を割り

当てているので、RAM変数による、キャッシュが

必要になります。

　次は、M120Aの　I/Oポート表を作成します。

CPUのリセット端子、クロック入力端子は、I/O

ポートの候補としては除外します。

　CPU内蔵のクロックは、やや周波数が　ぶれ

ます。 調歩同期のシリアル通信を行う場合は

なるべく周波数が ぶれない方がいいです。　あ

と、リセット端子は、内蔵リセット回路があるの

ですが、電源 OFFから ONの時間間隔が 短い

とリセット回路が、誤動作する事が あります。

その現象を 過去に確認した事があるので、リ

セット端子には、CRと 逆流ダイオードを付けた

リセット回路を付けています。

で、使えるポートのビットは　Port.1が 8 bit、

Port.3が 4 bit、Port.4が 2 bit で、計 14 bit で

す。　M120Aでは、調歩式シリアル通信、I2C、

SPI の ３つを パラって使えるようにするので

　一つのポート表に、３つのインタフェースの

信号名を記入します。

Port Pin 種別：用途等

p1_1 19 　SPI：　SS1

p1_2

p1_3

p1_4

p1_5

p1_6

p1_7

p3_7

18

17

16

15

14

13

2

　SPI：　SS2

　空き

　TxD

　RxD

　PgmRxD

　空き

タイマー割込みモニター

p1_0 20 　SPI：　SS0

p3_5 9 　SPI：　SCK　

p3_4 10 　SPI：　MOSI

p3_3 11 　SPI：　MISO

p4_5 12 　I2C：　SCL

p4_2 1 　I2C：　SDA

　ピンアサインが、決まりました。

　前ページにてRAM変数 という言葉を使いまし

たが、I/Oポートの キャッシュメモリのような使

い方をします。　

内蔵RAMメモリは、ウェイトサイクルは無いの

で、高速にアクセス出来ます。　それに対し

I/Oポートを　アクセスする場合は、ウェイトサイ

クルが 多少入ってきて、アクセス速度が遅くな

ります。

特に、I/Oポートに 1bitの書き込みを行う場合、

CPUと　I/Oポートの間は、 8bit の　バスライン

で 接続されています。1bit 書き込むという事は

物理的に出来ないのです。　過去の動画でも

説明した事があると 思いますが、バスラインが

8bit である以上、8bit単位の読み出し、書き込

みしか出来ないのです。　

　よって 1bit書き込む際は、一旦 その I/Oポート

の状態を Byte単位で 読み出して レジスタに置

きます。　そして 特定の bit指定データと　論理

演算を行い その結果を、I/Oポートに Byte単位

で書き込みます。

　例えば、bit4 の ビット（10h）に　1 を立てる場合

を 考えてみます。 アセンブラソースで示します。
 mov.b p1, r0l ; ポートp1 --> R0Lに読出し

 or.b　 #10h, r0l ; ビット演算

 mov.b r0l, p1 ; R0L --> ポートp1に書込み

という、３ステップになります。

　ポートのアクセスが、２回生じるので　ウェイト

サイクルもその分増えて、遅くなります。

　上の例では、間にビット演算を挟んで、２回I/O

アクセスを行っていますが、ビット演算は瞬時に

終わるので、I/Oポートアクセスが ２回連続した

状態になるので、この場合　特に遅くなります。

　という事で、ビット単位で　I/Oポートを　アク

セスする場合に、I/Oポートアクセス回数を

減らす手段として、I/Oポートの状態を記憶す

る RAM変数の キャッシュを用意します。

　仮に　ポート p1 のRAMキャッシュとして　

p1_rch という名前の変数を用意します。

　最初の　ポート初期化の時、p1の 初期化値

を　p1_rch にも 書き込んでおきます。

　そして、実際に使用する場合を アセンブラで

示します。

 mov.b p1_rch, r0l ; p1_rch --> R0Lに読出し

 or.b　 #10h, r0l ; ビット演算

 mov.b r0l, p1 ; R0L --> ポートp1に書込み

 mov.b r0l, p1_rch ; R0L --> p1_rch に 書込み

　1行命令が増えますが、この方が、結果として早い

です。　オシロスコープで確認してます。

で、R8C/M120Aの場合　I/Oポートの RAMキャッ

シュを、I2Cと SPIの両方で使用する場合、各I/O

ポートの RAMキャッシュを I2C と SPI にて 共通

の物にしておかないと、I/Oポートのキャッシュが

破綻します。　

　よって、I2C または SPIの I/O処理とは独立し

て、グローバルな変数として、I/Oポートの RAM

キャッシュを　用意します。

I2C　I/O処理
プログラム

SPI　I/O処理
プログラム

各I/Oポートの
RAMキャッシュ

R8C/M110Aマイコンと 138の接続図

1

2

3

4

5

6

7

R8C/M110A
(14pin)

14

13

12

11

10

9

8

p3_7

Xin

Gnd

Xout

Vcc

Mode

p1_1

p1_2

p1_3

p1_4

p1_5

p1_6

p1_7

Txd

Rxd

PgmRxd

/Reset

1
2

3
4

5
6

7 1
0

98

1
1

1
2

1
3

1
4

G
n
d

V
c
c

　
7
4
1
3
8

Y
7

A

C
G
2
A

G
2
B

G
1

B

Y
3

Y
2

Y
1

1
5

1
6

Y
4

Y
0

Y
5Y
6

MISO

SCK MOSI

SS0

SS1

Vcc

Vcc

ex_SS0

ex_SS1

ex_SS2

SCK

MOSI

MISO

デバイスに
向かう信号線

　M110Aに　74138を接続しても

拡張SS信号は 3本しか出せません。

Idle

　M110A では 74138を 使っても 3本しか ex_SSを 出力出来ない

ので、M110Aが 出力する 2本の SS信号で 間に合うなら　SS信号を直接デバイスに接続した方が いい。　（注.1）

SPIの SS信号の拡張に関して

　SPIの　SS信号の　基本的　本数は

M110 が ２本で 、 M120 が ３本です。　

　前々回、138の 動画で、チップセレクト信号の

デコーダー ICの 74138を紹介しました。

確か、HC138 が　あったと思うので、HC138 を

使用して、M120の　３本の SS信号を　7本に　

増やしてみます。　138には　A～C の 3bit バ

イナリ入力の３本の入力端子が　有ります。

　ここに　M120の ３本のSS信号を接続します。

SS0 = A端子、SS1=B端子、SS2=C端子です。

あと 138 には チップ選択の G端子が、ありま

す。　これは、G1端子を Vcc に　プルアップし

ます。 G2A端子と　G2B端子を　Gnd に落とし

ます。 これで、138は イネーブル状態に なりま

す。

　M110に　138を接続する場合は　SS0 = A、

SS1=B　C端子を Gndに　接続します。

　因みに、138の 出力端子は 8本あるのに、

何故 7本のデバイスまでなのかというと、

SS2,SS1,SS0 = 111 を　どのデバイスにも接続

してないアイドル状態として　使用する予定な

ので、Y0 ～ Y6 を SS信号として使用して、Y7

には、何も　接続しないで下さい。

1 2 3 4 5 6 7

10 9

8

11121314

Gnd

Vcc

　74138

Y7

A

C G2A G2B G1B

Y3Y2Y1

1516

Y4Y0 Y5

Y6

R8C/M120Aマイコンと 138の接続図

p4_2 1

2

3

4

5

6

7

8

9

10

R8C/M120A
(20pin)

p1_020

19

18

17

16

15

14

13

12

11

p3_7

Xin

Gnd

Xout

Vcc

Mode

p3_5

p3_4 p3_3

p4_5

p1_1

p1_2

p1_3

p1_4

p1_5

p1_6

p1_7

Txd

Rxd

PgmRxd

/Reset

1
2

3
4

5
6

7 1
0

98

1
1

1
2

1
3

1
4

G
n
d

V
c
c

　
7
4
1
3
8

Y
7

A

C
G
2
A

G
2
B

G
1

B

Y
3

Y
2

Y
1

1
5

1
6

Y
4

Y
0

Y
5Y
6

SCK

MISOMOSI

SS0

SS1

SS2

SDA

SCL

Vcc

ex_SS0

ex_SS1

ex_SS2

ex_SS3

ex_SS4

ex_SS5

ex_SS6

MISO

SCK

MOSI

to device　M120Aに　74138を接続して 3本の

SS信号を 7本の ex_SS に　拡張出来た。

　　　　　　　　　M120Aが出力する ３本の SS信号で 間に合うなら

　　　　　　　　無理に 74138を 使う必要は　ありません。　M120A

が 出力する SS信号を デバイスに直接 接続します。（注.1）

Idle　

LDAC

DV_RES

 （注.2）緑色は

　（ 注.1 ）は、　SS信号の先に 74138が　入っ

ているか、無いかを　ドライバソフトに　認識さ

せる必要が あります。　これは、その後　ソフト

を開発を 行う際に 意識する必要が あります。

　ここまで、ハード接続仕様を決めれば、あと

は 基板作成が 出来ると思います。

　と思っていましたが、過去の「058 RX220マイ

コン SPIデバイス側 基板作成」の動画を確認

すると、デバイスによって、個別の信号を 若干

用意する必要がある事を 思い出しました。

　それが 前ページの 緑色は (注意.2) です。

17pin、p1_3 に　LDAC信号と、13pin、p1_7 が

DV_RES（ デバイス リセット ）信号です。

　058の 3種の SPI デバイス基板には、

①　16bit I/O Expander／MCP23S17-E

②　12bit D/Aコンバータ／MCP4922

③　512Kbit SPI Serial SRAM／23LC512

　の、３つのデバイスが 実装されています。

このうち

①の MCP23S17-E 16bit I/O エクスパンダー が

　DV_RES信号 (Low Active) を 必要とします。

②の　MCP4922 12bit D/Aコンバータ　にて

LDAC信号 (Low Active) が 必要になります。

③の　23LC512　512Kbit SPI Serial SRAM は

個別の信号は　特に必要ありません。　

緑色は

　今回の　R8C/Mマイコンの、SPIの デバイス

アクセステストは、この ３つのデバイスを使用

します。

　特に、③の 23LC512の　SRAMは、SPIのデ

バイスしかありません。　これを前から RAMの

少ない R8C/Mマイコンに接続出来ないかと考

えていました。　シリアルRAMなので 内蔵RAM

の様に 自在には扱えませんが、64byte単位の

補助記憶的な　使い方をすれば、結構 使える

のではないかと思います。

　次に　過去の 「 060 RX220 SPIアクセス ソフ

ト編 」の一部を 引用して　SCKと MOSIの 信号

の　オシロ波形をお見せします。　このオシロ

波形を 出しているのは、 RX220マイコンのSPI

内蔵周辺回路です。　よって　この信号は、

ハードウェアにより生成されています。

　オシログラフの下に　時間軸の メモリと、経過

時間の記載があったので、 8 bit 転送するのに

3.78usなので、1 bit 転送するのに 0.4725us で

約 0.5us / bit になります。　よって 2Mbit/秒で

転送してます。

　この速さは、ソフトによる SPI では 多分 無理

です。

　次のページで、RX220の SPI信号グラフを お見

せします。

　右のオシログラフは、上側の信号が SCK

下側の信号が、MOSI マスター出力データで

す。

　データは、１バイト分のデータ転送時の波形

です。　データは、0xAA を転送してます。

　データは、正論理で　左から MSB b7 です。

このデータは、マスタが送信していますので

スレーブ側では、上側の SCKの 立ち上がり

エッジで、 下側の MOSI信号の 取り込みを

行う事になってます。

　そして、SCK信号の　立ち下がりエッジで

データの信号を、次の信号に入れ替えて

います。　

b0のデータ信号を出した後は、しばらくの間、

b0のデータ信号レベルを 維持しているようで

す。

b7 b6 b5 b4 b3 b2 b1 b0

1 0 1 1 10 0 0

SPI信号波形の確認　１

SPI信号波形の確認　２

00h 03h 0Fh 3Fh

　右のオシログラフは、上側の信号が SCK

下側の信号が、MOSI マスター出力データで

す。　このオシログラフでは ４バイトのデータを

送信しています。　

データは、0x00、0x03、0x0F、0x3Fの 順に

送信しています。 右のグラフで、色を付けてい

る四角は、青が 0 の領域、赤が 1 の領域で　

す。

　SPI信号の 伝送時の波形のイメージが多少

なりと掴めていただければ幸いです。

