
XIAO ESP32 S3で　発生した不具合

　前回、XIAO　S3で MicroPythonファームウェ
アを書き込んだ後、PCから　USBケーブルを抜
いて　再度 PCに差し込むと、USBの接続が切
れる音が、1～2秒周期で鳴りだしました。

　再度、MicroPythonファームウェアを 書き込
むと　鳴りやみました。　という事で何らかの理
由で　ファームウェアが壊れたと思われます。

で、２回目は　ファームウェア書き込み後、連続
して　Arduino IDEにて 通常のプログラムを書
き込んでいたのです。　その状態で　USBケー
ブルを引き抜き、再度差し込むと ファームウェ
アは、壊れません。 最後に書き込んだアプリ
が動いてます。

　これは　もしかしてと思い、再度、ファーム
ウェア書き込み後、PCからUSBケーブルを引き
抜き　再度　PCに接続すると、USB接続が切
れる音が、また 1～2秒周期で鳴り始めました。

　これは、ファームウェア書き込み直後は、
MicroPythonファームウェアだけが、Flashメモリ
に書き込まれていて、アプリに相当するプログラ
ムが、無い状態にあります。

　この状態で、USBケーブルの抜き差しにより、
CPUリセットが かかり、アプリに相当するプログ
ラムを　実行しようとして、無いので暴走して、
Flushメモリを 壊したと、思われます。

　よって、ファームウェア書き込み直後、連続して
何でもいいですから、アプリに相当するプログラ
ムを Arduino IDEにて 必ず書き込んで下さい。
　これにより、プログラムの暴走を　防ぐ事が出
来ます。　　尚、XIAO C3においては、同様の事
をしても、ファームウェアが壊れる事は、ありませ
んでした。　多分、CPUコアが　S3は　Xtensa
LX7で、 C3は Risc Vであるため、暴走の状況が
　異なるのでしょうね。　　以上でした。

XIAO ESP32 C3の　10KΩ抵抗取り付け

　前回は、ブレッドボード上で　10KΩを接続し

ましたが、毎回ブレッドボードでやるのは、面倒

なので、XIAO ESP32 C3のモジュール基板に

ハンダ付けしました。　モジュール基板裏側に

略した信号名を付けてありますが、 3V3と　D8

の間に 10KΩの抵抗を　付けます。

右の写真では、抵抗は 1/6Wを使用してます。

　あと、青い積層セラコンを　VUSBと　GND間

に 接続してますが、これは　無理に付ける必

要は ありません。

esptool.exeに　関して

　前回は、私も esptoolに関して不十分な理解

で　扱っていたので、本質をきちんと説明出来

てなかったと、思います。

　MicroPythonを　ESP32に書き込む機能は

間違ってないと思いますが、独立したユーティ

リティというだけでなく、Arduino IDEと協調して

ESP32に　アプリを書き込んでいます。

i さんの説明によると esptool.exe は Pythonの

インタプリタと　利用するライブラリパッケージと

ソースを　圧縮してEXEにまとめる　Pybuilderと

いうツールがあります。　

このツールにより　esptool.exe は　作られてい

る　との事です。

では、本題 割り込み処理に　入ります。

　割り込み処理ですが、初心者の方は、割り込

み処理のイメージが掴めるでしょうか。？

　たとえば、事務所で　だれかが　パソコンに、

データ入力の仕事を　していたとします。

その時、電話の呼び出し音が鳴ったら、データ

入力の手を休め、受話器を取り　電話対応を

行います。　電話対応が終わったら、またデー

タ入力の仕事の続きを行います。

　この時の電話対応の処理こそが、割り込み

処理という事です。　そして、その前後のデータ

入力処理は、割り込み処理中は、止まっていま

すが、何事も無かったかのように、データ入力

処理は、続けられます。　通常の割り込み処理

は、メインの作業に　影響を及ぼさないように

迅速に （ 超短時間に ） 実行されます。

　場合によっては、メインの流れに影響を及ぼす

割り込みもあります。　それらは、例外割り込み

といって、例えば割り算で、分母が 0 の割り算を

行った場合、演算出来ないので 例外割り込みに

なりメイン処理が、即座に中止されます。

　特権命令の例外割り込みもあります。　これは

Windowsのような　ＯＳ上で動作するアプリで、

ＯＳカーネルしか実行できない特権レベル　0 で

のみ実行できる命令を 特権命令といいます。

　これを、特権レベル 3 の アプリが　特権命令を

実行しようとすると、即座に　ＯＳにトラップする

事になります。　組み込みマイコンでは　当たり

前に使用している IN命令、OUT命令は Windows

上では、特権命令で使用出来ません。

　Linuxでは、一部の IOポートを 解放している様

で、条件付きで ＩN、OUT命令が　使えます。

割り込みの種類

　大きく分けてハードウェア割り込みと、ソフト

ウェア割り込みが あります。

　ハードウェア割り込みは、内蔵周辺回路また

は、CPUモジュール外部に接続したデバイスか

らの、割り込み信号を使用した割り込みです。

　例としては、インターバルタイマー回路の割り

込み、シリアル通信の受信処理に使用されま

す。　インターバルタイマーは　歯切れいい値と

して、1/1000秒周期で　割り込みを発生させる

場合が　多いと思われます。

　シリアル通信の場合、受信処理には　割り込

みが使用されます。　特に早いボーレイトの場

合、割り込み処理を使用しないと、受信文字の

欠落を発生させてしまいます。　送信の場合は

他に忙しい処理がある場合、割り込みを使用し

た方がいいと思われます。　CPUによっては

　DMA機能を使用して、シリアル通信を行う事が

出来る CPUが　あります。

　ソフトウェア割り込みは、古い話ですが、MS-

DOSにおいて　INT 21H の ソフトウェア割り込み

を 使用して DOSのファンクションコールを 行っ

ていました。　あと、デバッガの支援機能として、

シングルステップ実行機能と、ブレークポイント割

り込み命令が　ありました。

　割り込みには、マスク可能な割り込みと　マスク

不可能な割り込みもあります。　通常は　マスク

可能な割り込みを使用します。　マスク不可能な

割り込みは　NMI（ NonMaskable Interrupt ）と

呼ばれ、システム全体に　致命的な障害をもたら

す緊急事態に使用されます。 マスク可能な複数

の割り込み信号線を持っている CPUは、各信号

線に　優先順位を設定できて、多重割り込みの

レベル設定をサポートします。

　　あと実際に、多重割り込みの優先順位を決

めるのは、やや難しい要素もありますが

　仮にインターバルタイマーと、シリアル通信の

受信処理の２つの割り込みであれば、シリアル

通信のボーレイトが、100 kbpsを超える　極端

に速い場合は、シリアル通信の受信処理の優

先順位を早くした方が よいと思われます。

　シリアル通信のボーレイトが、38400bps程度

までなら、シリアル通信の受信処理と、インタ

ーバルタイマの 両方を　同じ優先順位で、使っ

ても、私の場合　百円 R8Cマイコンで、問題あ

りませんでした。　たまたま動いていた　という

事ではなくて、各　割り込み処理の入口で、

LEDを点灯させて、割り込み処理の出口で　

LEDを消灯させます。　その２つのLEDの信号

を、オシロスコープで２現象で観測して、時間

的余裕度を、観測したという事です。

　割り込み処理の　実際の処理時間を観測する

用途で、オシロスコープは、よく用います。

割り込み処理による設計のポイント：

①　割り込み処理時間は出来るだけ、短時間に

　　終わらせる。　割り込み周期に対して、割り込

　　み処理時間が半分以下になるようにします。

　　上記が無理な場合でも、割り込み処理時間

　　は、割り込みの周期を超えてはいけません。

　　　処理が終わっていないのに次の割り込み

　　タイミングになると、割り込み以外の処理が

　　出来ず　システムが　破綻してしまいます。

②　割り込みの優先順位と、多重割り込み。

　　割り込み周期が短い場合や、割り込み処理

　　が遅れると制御対象に影響がある場合は、

　　割り込みの優先順位を上げて、多重割り込み

　　を　検討します。　多重割り込みを　許可して

　　いない場合は、割り込みの処理途中に、

　多重割り込みを　許可していない場合は、割

り込みの処理途中に、異なる割り込みが、発生

しても、先行する割り込みの処理が、終わるま

で、次の割り込みは待たされてしまいます。

割り込まれる側での 注意事項

　割り込む側の話を　中心にしてきましたが、

割り込まれる側のプログラムにおいても、一部

注意が必要となります。

　よくある処理として、割り込み処理に同期して

メインループのプログラムを走らせる場合が

あります。　その場合　割り込み処理から、メイ

ンループに渡される　フラグ変数が　あります。

このフラグ変数は、変数宣言先頭に volatile

を付けて下さい。 オプティマイザに 改ざんされ

ないようにするためです。　それと クリティカル

パスの問題も あります。

　クリティカルパスは、何らかの事例で 表した方

が、分かりやすいと思うので、シリアル通信の受

信処理と組みにして使用するリングバッファを 例

に説明します。

　リングバッファは　FIFOバッファ（ 先入れ先出し

バッファ ）で、書き込むタイミングと、読み出すタ

イミングが　ずれても、256byteほどのバッファに

　受信文字列を貯め込んでおけるので、慌てて

データを 読み出す必要は　ありません。

リングバッファを構成する変数は

typedef　struct {

 unsigned char buf[256]; // バッファ

 unsigned char wp; // 書込み位置

 unsigned char rp; // 読出し位置

 unsigned char cnt; // 格納byte数

} Ring_Buffer;

に なります。

リングバッファ アクセス関数

　ちょっと横道に逸れますが、リングバッファの

アクセス関数について、フローをお見せします。

　やっている内容は、簡単です。

　Ring_Buffer Rb; // リングバッファ変数宣言

Initial/初期化

Rb.wp = 0;

Rb.rp = 0;

Rb.cnt = 0;

Return

PutRing/リング書込み

Rb.buf[Rb.wp] = RxD;

Rb.wp++;

Rb.cnt++;

Return

RxD/受信データ

255を ++したら
 0 に戻る

Rb.cnt==255
Yes

満杯時は無視

GetRing/リング読出し

関数値 = Rb.buf[Rb.rp];

Rb.rp++;

Rb.cnt--;

Return

255を ++したら
 0 に戻る

Rb.cnt==0
Yes

空状態

関数値 = -1;

カウンタ +1

カウンタ -1

関数値は、2byte整数で 返す

　薄い赤色のリング書込みは、シリアル受信 割込

み処理内にて使用されます。 薄緑のリング読み

出しは、メインループ内で 呼び出されます。

DI /割込み禁止

EI /割込み許可

　先ほどの、リング読み出しのフローを、またお

見せします。　　　　　　　　ピンク色の部分は

　　　　　　　　　　　　　　　　クリティカルパスです。
GetRing/リング読出し

関数値 = Rb.buf[Rb.rp];

Rb.rp++;

Rb.cnt--;

Return

255を ++したら
 0 に戻る

Rb.cnt==0
Yes

空状態

関数値 = -1;

カウンタ -1

関数値は、2byte整数で 返す

DI /割込み禁止

EI /割込み許可

　リング読み出しルーチンの クリティカルパスの

部分は、DI/割込み禁止から、EI/割込み許可の

間です。　割込み禁止と　割込み許可の機能が

無いと、リング読出し中に、クリティカルパス部分

実行中に、シリアル受信割込みが、発生する場

合があります。 そして、リング書き込みが呼び出

され、特に共通に使う cnt という変数のつじつま

が、合わなくなります。　もう少し具体的に説明す

ると、左のフローでは　cnt--を やってますが、ア

センブラレベルで見ると、

①　cntという変数をCPUのレジスタに読み出し。

②　レジスタの値を デクリメントする。

③　デクリメントされたレジスタ値を cnt変数に、

　　格納する。

という３段階を 実行します。

リングバッファ アクセス時のクリティカルパス

　で、仮に　cntが　最初 10 で、デクリメントして

9 に なった値を　cnt変数に格納する訳ですが

③の　cnt変数に値を書き込む直前に、受信割

り込みが発生すると、どうなるかという事です。

リング読み出しルーチンの　③の段階で、9 を

cnt変数に書き込もうとしていたタイミングで、シ

リアル受信割込みで、リング書込みルーチンが

呼び出されると、RxDデータを リングバッファに

書き込み、wp++ をして　cntも ++　します。

具体的には、メインルーチンのリング読み出し

ルーチンで cntは　③の 9 を書き込む手前で、

割込み処理に飛んだので cnt変数は、まだ

10のままです。　その cntを ++して、割り込み

処理内で　cnt=11 に変更されます。　その後

メインループの リング読み出しの ③を実行し

11 になっている、cntを　9 で　上書きしてしま

います。

　結果として 1byte リングバッファ処理内で、受

信データを消失してしまいます。 このような障害

が発生する恐れのある箇所を　クリティカルパス

と呼びます。

 そのような障害の発生を　防止するため、DI/割

込み禁止と、EI/割込み許可が 必要となります。

　クリティカルパスの区間では、割込み処理が

割り込まないようにしているという事です。

　割込み処理を扱う時は、このような クリティカ

ルパスの有無を、考慮する必要が あります。

　通常、シリアル通信はライブラリで完備してある

でしょうから、特に考慮する必要はありません。　

但し、ライブラリに存在しない 特殊なデバイスを

接続する場合は、自前で割り込み処理を作成す

る必要に迫られる場合が あります。

ややこしい話で　すみませんでした。

今回の割り込み処理実験の概要

　今回、ESP32を使って GPIO端子から、入って

くるデジタル信号を 割込み信号として受付けて

割込み処理ルーチンを　呼び出す実験をしま

す。　で、今回の場合、割込み信号となる信号

を出す物を、別途用意しないといけません。

　柔軟性を考慮して、別途 割込みテスト信号

出力用のマイコンを　用意します。

　殆どパルス発生器なので　百円 R8Cマイコン

を使います。 R8Cマイコンは 5Vでも　3.3Vでも

使用できますので、今回は ESP32に合わせ、

3.3Vで使用します。

　今回、パルスを　周期的に出し続ける仕様に

します。　こうする事により、パルス波形を、オ

シロで観測しやすいというメリットも あります。

R8C/
M120
マイコン

ESP32-
WROOM

-32
マイコン

3.3V

GND

割込み信号

割込み応答信号
P1_0

P1_１

D2

D4

　接続は、ブレッドボード上で、上記の配線を

行っています。　電源は ESP32の USBケーブル

で、5Vを ESP32基板に供給し、基板上の 3.3V三

端子電源IC出力を、R8Cに分配してます。　R8C

は、ESP32に比べ　一桁遅いマイコンなので、そ

の分 消費電力は小さいです。　割込み信号、割

込み応答信号は、Low Activeとします。　且つ

ESP32の D2端子での 割込み受付は FALLING

(Highから Lowに変化した エッジ検出) です。

　割込み応答信号て、何。？　という事になりま

すが、通常周辺回路には、CPUの割込み処理

先頭にて　割込み信号を解除する機能が ありま

す。　その模倣です。

割り込み信号の タイミング設計

　まず、割り込みパルス発生器の方ですが、パ

ルス出力は　5ms周期で　応答信号が戻って来

ない場合、4ms経過したら　出力側で、パルス

出力を　解除します。　よって　Low Activeなの

で、Highから　Lowに出力パルスが　落ちた時

点で、割込みが発生した事を模倣しています。

パルスを Lowに落としたままでは、次の割込み

信号が出せないので、4ms経過して、相手側

（ ESP32 ）から、応答が無かった場合、パルス

出力側にて、パルス出力を Highにして 次の割

込み出力に備えます。

ESP32からの 応答が無かった場合の、タイム

チャートを　以下に示します。

4ms 4ms

赤線が　割り込みが発生した タイミングとなります。

1ms 1ms

　割り込み信号を受け付けるESP32の方ですが

D2端子が、Lowになっているか確認して、Lowで

あれば割り込み処理を始めます。　まず、割込み

応答信号を　D4端子から Lowを出力します。　次

に、メインループに渡すフラグに Trueを設定しま

す。　次に　D２端子が、Highになったか確認し続

けます。　Highになったら ループから抜けます。

D4 割り込み応答信号を Highにします。　本来で

あれば、この下に、何らかの割り込み処理が、あ

るはずですが、今回は 特にやる事は無いので

割込み処理から、リターンします。

割込み信号、割込み応答信号の波形

上が、ESP32の
D2に入っている
割込み信号で

下が、D4から出
力される割込み
応答信号です。

　上の波形は、横軸(時間軸) 点線のひとマス

が、1msです。　右の波形も 同じ時間軸 幅で

す。 で、上の波形は、ESP32から、割込み応答

信号が、出ていますが、ブレッドボード上で、

ジャンパ線を引き抜き 応答信号を R8Cに　返

してません。　その関係で 上下同じような 4ms

幅の波形が出ています。　で 右の波形は R8C

に　応答信号を返した波形です。

　で、上の波形は Lowの時間幅が　極端に短いの

で、細い縦線のように見えます。

時間軸　10μsです。 時間軸　1μsです。

　左が、時間軸 10μsで見た波形、右が、時間軸 1μsで　見た波形で
す。　右側の ch.2の 応答信号の縦線が　黒く塗りつぶしたように 太く
なっているのは、ch.1が R8Cマイコンの出力信号で、 ch.2が、ESP32
の信号で、ch.1でトリガを取っているので、ESP32のクロックが、別ク
ロックで、ソフトのジッターもあるので、同期が ぶれる状態が発生して
ます。 それと、オシロの方も　1μsという早い速度でサンプリングする
関係で イクイバランスサンプリングという手法で サンプリングする関
係で　同期がとれないと このように黒く塗りつぶしたようになります。

約 4us

約 5.4us

約
1.4us

約
1.0us

ch.1の 1.4us は R8C側の処
理で、ch.2の 1.0usは ESP32
側の処理です。 同じような
処理内容ですが、時間差は
さほど無かったですね。

ESP32側 今回のソース

// 使用 IOピン
#define IRQ_sig 2 // 割込みポート D2 使用
#define IRQ_Active LOW // 割込みポート状態有効
#define IRQ_Idle HIGH // 割込みポート状態無効
#define LED_Red 4 // LED赤 Port

// 外部信号による割り込み 受付 Flag
volatile boolean ExIRQ_flag = false;

// 割込み処理プログラム
void IRAM_ATTR on_port_irq(void)
{
 char flg;

 ExIRQ_flag = false; // 仮初期化
 flg = digitalRead(IRQ_sig);
 if(flg == LOW)
 {
 digitalWrite(LED_Red, LOW); // 赤LED 点灯（ 割込み応答信号 ）
 ExIRQ_flag = true; // メインループに割り込みが 発生した事を 伝えるフラグ

volatile は、割込み処理により、変更を加えられる
可能性のある変数である事を宣言してます。　これに
より、オプティマイザの最適化を、この変数に対して行
わないように指示します。

IRAM_ATTR は、この on_port_irq関数は 割込み処理
なので、メモリスワップは行わず 常時 RAM上に 固定
的に 配置する宣言です。

 while(1) // 外部との間で 簡易なハンドシェークを行う
 {
 flg = digitalRead(IRQ_sig);
 if(flg == HIGH)
 {
 digitalWrite(LED_Red, HIGH); // 赤LED 消灯
 break;
 }
 }
 }
}

void setup()
 {
 // put your setup code here, to run once:
 pinMode(IRQ_sig, INPUT_PULLUP);
 pinMode(LED_Red, OUTPUT);
 digitalWrite(LED_Red, HIGH); // 赤LED 消灯（ 割込み無し ）
 attachInterrupt(IRQ_sig, on_port_irq, FALLING);
}

attachInterrupt(IRQ_sig, on_port_irq, FALLING); は
割込み処理関数を システムに登録する　割込み処理 登録関数です。
第１引数　IRQ_sig は　GPIOの番号です。　今回は２番です。
第２引数　on_port_irq は　割込み処理関数の関数名です。
第３引数　FALLING は、信号の立ち下がりで、割り込みを発生させます。

void loop()
{
 // put your main code here, to run repeatedly:
 boolean sw;

 sw = false;
 noInterrupts(); // 割り込み禁止
 if(ExIRQ_flag == true)
 {
 sw = true;
 ExIRQ_flag = false; // フラグ無効化
 }
 interrupts(); // 割り込み許可

 if(sw == true)
 {
 // やや時間のかかる処理をやらせる
 }
}

メインループ内の処理です。
noInterrupts 関数が 全ての割込み処理を禁止す
る関数です。
interrupts 関数が　禁止した割込みを 許可する
関数です。
 この2つの関数で　挟んでいる箇所は　クリティカル
パス という事に なります。
　この２つの関数は、Arduino UNOと 同じ関数名
です。互換性を 持たせてあるようです。

あと、ExIRQ_flag == true は、メインループに
割込みがあった事を 通知するフラグです。
 割込み処理は、極力短時間で処理を終了する必
要があるので、時間の ややかかる処理は、メイ
ンループ側で　やらせるという事です。

