
データバス　16bit

データバス　16bit

メモリの アライメント

　メモリのアライメントと リトルエンディアン、

ビッグエンディアン は 直接的に干渉する事は

ないですが、物理的なメモリ上の書き込み位置

に違いが出ます。　（ 右図参照 ）

　特に C言語の場合は、構造体のパック、アン

パックと、メモリのアライメントは、密接に関わっ

てくるので、しっかり理解する必要があります。

　今回は、ちょっと視点を変えて ハード的な　メ

モリに接続されるアドレスバス、データバスの

観点で 説明してみようと思います。　シンプル

な 16bitの例で、説明します。　まずは、リトル

エンディアン、ビッグエンディアンの メモリ配置

イメージを図１に示します。 アドレスバスを 8bit

のイメージで表現してますが、最下位bit は メ

モリ素子に接続されません。 その関係で アド

レスバスの　最下位bit を * で表しています。

Address = 01h Address = 00h
b0b7b8b15

アドレス
バス 8bit

Address = 03h Address = 02h0000 001*b

リトルエンディアン

Address = 00h Address = 01h
b0b7b8b15

0000 000*b

アドレス
バス 8bit

Address = 02h Address = 03h0000 001*b

ビッグエンディアン

マイコンの場合、アドレスは Byte単位で 付けて

あるので、16bit バスの場合、b0 ～ b7 を 偶数ア

ドレスとして扱うと、リトルエンディアンに なりま

す。 b8 ～ b15 を 偶数アドレスとして扱うと ビッ

グエンディアンに なります。　薄緑色を付けてい

る箇所は、偶数アドレス側 （ アドレスバスの最下

位bit = 0 の側 ）です。

0000 000*b

Odd Even

OddEven

図１

図３

図２

データバス　16bit

　今回は リトルエンディアンで説明します。

0番地に ワードデータ 1234h を格納すると、図２の 並

びで データが 格納されます。　この場合、アドレスが

0000 000*b に ２バイトのデータが、行儀よく 横一列に

入っているので、１回の書き込みで格納できます。

読み出しも同様に、１回で読み出せます。

このような状態を メモリアライメントが 正しくとれている

という事になります。

　次に、１番地に ワードデータ 1234h を格納すると

図３の並びになります。　この場合は、アドレスバスの

0000 000*b と 0000 001*b に跨って段違いになった

状態で格納されます。　この状態を メモリ境界を跨いだ

状態といいます。　メモリアドレスが　奇数番地でワード

データを、書き込もうとすると 　CPUによっては

例外割り込みが、発生したり、例外が発生しなくても

１番地に書いたつもりのデータが、０番地に ズッコケる

場合があります。　パソコンの x86系ＣＰＵでは、メモリ

境界を跨いだデータ書き込みでも　正常に書き込んで

くれます。　

12h 34h
b0b7b8b15

0000 000*b

アドレス
バス 8bit

0000 001*b

リトルエンディアン

34h
b0b7b8b15

0000 000*b

12h0000 001*b

EvenOdd

　但し、メモリ境界を跨いでいると、２回メモリをアクセス

することになり、アクセス速度が低下します。

　32bit CPUの場合は、メモリ境界が 4Byte 単位で発

生します。 32bit CPUで、 16bitデータを書き込む場合

奇数番地でも、メモリ境界を跨がなければ、１回で書き

込めます。 例) 1番地は １回、3番地は、２回です。

Odd Even

ESP32の　メモリアライメント

　メモリのアライメントの話も　ややこしい話でし

たが、凡そ理解出来ましたでしょうか。？

　では、これからは　32bitの ESP32の話をしま

す。　実は、C　C++コンパイラは、賢くて　先ほ

どのメモリ境界を跨がないように、変数のアド

レスを調整してくれます。　もう少し具体的に言

うと　変数の先頭アドレスが、4の倍数に なるよ

うに調整します。　で、今回の実験は　Cコンパ

イラでよく問題になる構造体データのパック、ア

ンパックも兼ねて説明します。

　今回の実験は　構造体内で宣言した総バイト

数が、１つずつ異なる構造体データを　４つ用

意します。 右の図の構造体データです。

4byte整数を ２つ置き　その間に char 配列を

2byte、3byte、4byte、5byte と　順に用意しま

す。　

int4

c1

int4

int4

c1

int4

int4

c1

int4

int4

c1

int4

c1

c1c1

c1c1c1

c1 c1c1c1

 int i1;
 char tx[2];
 int i2;

 int i1;
 char tx[3];
 int i2;

 int i1;
 char tx[4];
 int i2;

 int i1;
 char tx[5];
 int i2;

Block_2

Block_3

Block_4

Block_5

　上記構造体データの、構造体のサイズを　

sizeof 演算子を使い　ｂｙｔｅ単位の サイズを　

確認します。

Test － Start.
Size of Block_2 ＝ 12
Size of Block_3 ＝ 12
Size of Block_4 ＝ 12
Size of Block_5 ＝ 16
Test － End.

 変数を足し合わ
 せたＢｙｔｅ数
 4 + 2 + 4 = 10
 4 + 3 + 4 = 11
 4 + 4 + 4 = 12
 4 + 5 + 4 = 13

　一番上の　Block_2 の 上記の構造体データ

の tx配列が　2byteなので　そのまま 後ろの

整数 i2 を 連結すると、4byteのメモリアライメ

ントに　i2が　納まらず、2byte前に　ずれた形

になるので、ｔｘ[2]の 後ろに 2byteの Padを　コ

ンパイラが入れ込む事で　アライメントを調整し

ているという事です。　アドレスの前方向には、

領域を確保された変数群が並んでいるので、

アライメントを跨ぐ変数は、メモリの後方に移動

させられます。　一番下の　Block_5は　tx[5]が

 int i1;
 char tx[2];
 int i2;

 int i1;
 char tx[3];
 int i2;

 int i1;
 char tx[4];
 int i2;

 int i1;
 char tx[5];
 int i2;

Block_2

Block_3

Block_4

Block_5

　メモリ境界位置より、1byteはみ出しているので

3byteの Padを 挿入して　後ろの int i2 が　アラ

イメントの境界内に納まる様にした。 という事で

す。 よって、変数を足し合わせたbyte数が　10、

11、12、13 に　対して　構造体のサイズが　12、

12、12、16 と　4の　倍数に　なっています。

　今回の例でいくと、構造体は　アンパックという

事に なります。　右側の　10、11、12、13 に構造

体サイズが、なる場合は　構造体は、パックに

なります。

タイマー割込みに関して

　前々回にも、割り込み処理を取り上げました

が、今回は定周期の時間で、割り込みが、か

かるタイマー割り込みです。　このタイマー割り

込みは、家電製品を含めた組み込み分野や　

計測制御分野では　よく使われます。　一定の

周期で、外部事象データを取り込み　そのデー

タを収録、または 取り込んだデータを　元に演

算判定処理を行い制御を行う場合が ありま

す。　あるいは、広域的に必要なデータであれ

ば、ローカルにデータを収録すると同時に、別

の場所にデータ転送する場合もあります。

　まずは、定周期というか一定のサンプリング

レイトで、データを　取り込みます。　昔は、コン

ピュータでサンプリングするデータというと、ア

ナログ信号のデータが多かったですが、最近

はセンシングデバイスが　I2Cインタフェースで

　接続できる物が　増えてきているので、便利に

なりました。　

　ちょっと 余談ですが、I2Cのデバイスを 使用す

る際 （ SPI も そうですが ）元々は 同じ基板上で

使用する事を想定したデバイスなので、インタ

フェースの信号を 長々と伸ばして使用すると、誤

動作する危険性が高いです。

　どのくらい配線を伸ばせるのかというのは、

ケースバイケースで 何とも言えませんが 凡そ

30cmぐらいが限度と考えた方がいいと思いま

す。　あと、SCLや　SDAの信号線の末端に　終

端抵抗を付けますが、初期の頃は　2.2KΩとか　

本に書かれてました。　終端抵抗は、抵抗値が

低くなる方が、波形の立ち上がりが、早くなりま

すが、あまり抵抗値を　低くすると　マイコンや　

デバイスの負担になるので 低くしても 1KΩまで

にして下さい。　余談でした。

タイマー割込みの ライブラリ関数 概要

事前の準備：

　タイマー割り込みに関わる関数は、ライブラリ化されていますが、何種類かあるようです。

訳あって、２種類試してみましたが、最初に 取り扱ったライブラリが、最終的に 扱いが簡単で

安定していた　uTimerLib を、今回 使う事に しました。 ツールの ライブラリを管理をクリックして

ライブラリマネージャから　インストール して下さい。 uTimerLibのバージョンは　1.7.2 でした。

①　タイマー割り込みプログラムの登録と　サンプリングレイトの設定を　行う関数：

　　まず、最初に呼び出す関数です。

void　TimerLib.setInterval_us(割り込み処理関数名、 マイクロ秒単位のインターバル値);

　　但し、インターバル値は　ミリ秒単位の設定で、ミリ秒以下の 値は切り捨てられるようです。

②　タイマー割り込みを　止める関数。

　　タイマー割り込みを　止める時に使用する関数です。

void TimerLib.clearTimer(void);

　　途中で止める必要があれば、使用して下さい。

　　この、２本のメンバー関数だけです。　シンプルですね。

　　あとは、今回のテストプログラムを　お見せします。

　追記：
 　要は、ミリ秒（1/1000秒）分解能のタイマ
 から、分周して呼び出されるようです。
 5678 と設定しても　678は　切り捨てられ
　て　5000 に　なります。

#include <uTimerLib.h>

#define led_pno2 2 // 赤LEDポート (2)
#define led_pno4 4 // 緑LEDポート (4)

static volatile char led;

Timer_IRQ.ino

プログラム　Timer_IRQ.ino の 先頭部分です。

　まず、インクルードファイル uTimerLib.h を　

呼び出しています。

　次に、GPIO2に　赤のLED、GPIO4に　緑の

LEDを　接続しています。　#defineで led_port2

と　led_port4 を 宣言しています。

char　ledという名前の変数を宣言しています。

予約語 volatile で　この変数に対するオプティ

マイザの 最適化を　停止させています。

//*************************
//** タイマー割込み処理 **
//*************************
void IRAM_ATTR blink(void)
{
 led++;
 if((led & 1) == 0) // LED変数 最下位bitは 0 か？
 {
 digitalWrite(led_pno2, LOW); // 赤：消灯
 digitalWrite(led_pno4, HIGH); // 緑：点灯
 }
 else
 {
 digitalWrite(led_pno2, HIGH); // 赤：点灯
 digitalWrite(led_pno4, LOW); // 緑：消灯
 }
}

　タイマー割り込み処理関数

blink(void)　です。　割り込み処

理関数は、メイン処理関数とは、

全く非同期に　呼び出されますの

で、引数も渡せませんし、関数値

を戻す事も出来ません。　よって

引数も、関数値も　void です。

IRAM_ATTRは、RAMメモリの

キャッシュ領域ではなく、スタティ

クな　RAM領域に配置されます。

　この関数内でやっている事は、

変数 ledを インクリメントして、最

下位 bit が　ゼロか　否かにより

赤と緑のLEDを　交互に点滅させ

ています。　割り込み処理の中では、GPIOのアクセスは　問題

　ないと思いますが、シリアル通信は、割り込みを使

　用しているため　呼び出してはいけません。

void setup() {
 // put your setup code here, to run once:
 led = 0; // LED点滅カウンタ初期化
 pinMode(led_pno2, OUTPUT); // 赤LEDポート出力に設定
 digitalWrite(led_pno2, LOW); // 赤LEDポートに LOW出力
 pinMode(led_pno4, OUTPUT); // 緑LEDポート出力に設定
 digitalWrite(led_pno4, LOW); // 緑LEDポートに LOW出力

 TimerLib.setInterval_us(blink, 500000);
}

void loop() {
 // put your main code here, to run repeatedly:
 // TimerLib.clearTimer();
}

　setup関数は、初期化処理だけ

です。

　２つの LEDポートの 出力指定

と、出力を LOWに設定していま

す。

そして割り込み処理登録が

TimerLib.setInterval_us()関数で

割り込み処理関数名　blink と、

割り込み周期 500000（ 0.5秒 ）を

設定しています。

loop関数は、何もしていません。

次は、動画をお見せします。

