
７セグメントLED ダイナミック点灯のソフト開発

　ハードウェアを駆動するソフトを　作成する場

合、まず対象となるハードウェアを理解する事

から始めます。

　上の画像は、今回作成したデジタル時計用

のベース基板です。　中央下側の　縦２列に並

んだピンソケットに　ESP32モジュールが、挿入

されます。　ESP32のピンソケットから、2つのトラ

ンジスタアレイ TD62083APに　接続されます。

　上側のトランジスタアレイが　７セグメントの　カ

ソード側　Aから Gの セグメント信号に接続され

ます。　このセグメント信号は　各桁の　同じセグ

メント名同士の信号が、結線されています。

　下が、７セグメントの アノード側で　アノードコモ

ンなので、各７セグメントから　論理的に１本の　

信号線が出てます。　表示桁数が、8桁であれ

ば、８本の アノード側信号が 出てます。　アノー

ド側なので、電圧を ＋側に引き上げる必要が　

あります。　その関係で、トランジスタアレイの出

力に　更に　PNPトランジスタの　２SA1015を接

続しています。

　この回路構成にしたのは ESP32の 3.3V出力を

5Vに　電圧変換する意味合いもあります。

　次ページに、変更した回路図を示します。

７セグメント表示基板　ドライブ回路図　(改)

Vcc 5V

10k
*8

2.2k *8

ESP32

TD62083AP
7segDisp

1
2
3
4
5
6
7
8

1 18
2

4
3

5

7
6

8

9

17
16

15

13

11

14

12

10

2SA1015

ESP32

TD62083AP

1 18
2

4
3

5

7
6

9

17
16

15

13
14

12

10
7segDisp

9
10
11
12
13
14
15

680 *7

Vcc 5V

18

seg A
seg B
seg C
seg D
seg E
seg F
seg G

コロン

コロン

10h
1h

10m
1m

10s
1s

19
20
16
22
23
24
25

io-15
io-2
io-4
io-16
io-17
io-5
io-18
io-19

7
8
9
10
11
12
13

io-33
io-25
io-26
io-27
io-14
io-12
io-13

　左側　赤枠内の ESP32側の信号線　割り付けは

 初期の物から 変更しています。

　Vcc５Vを　ESP32の Vinに入れる回路は、上下どち

 らでも　かまいません。　スイッチを ON、OFFする

　手間が　無いのは、下の青枠内の回路です。

Vcc 5V Vin

ESP32

18

1
.5

k

Vcc 5V Vin

ESP32

18

1
.5

k

Max 1A
ショットキー
ダイオード

　先ほどの　外部電源の 5Vと　USB経由の 5V

の 切り替え回路ですが、ショットキーダイオー

ドによる切り替えの動作がよく分からない方も

いると思います。

　その前に　定電圧電源回路に ついて簡単に

説明しておきます。　定電圧電源回路内には、

基準電圧発生回路が　あります。　この基準電

圧に合わせる形で　出力電圧を制御します。

　典型的なアナログフィードバック回路と なりま

す。　基準電圧と比べて出力電圧が高ければ

低くなるように制御し、逆に　基準電圧と比べ

て出力電圧が低ければ、高くなるように制御し

ます。　

基準電圧発生回路は、各電源毎に、多少バラ

つきがあります。　

　仮に　２つの 5V電源　Aと　Bがあり、Aが、

5.1V出力で、Bが　5.0V出力の場合、その２つの

電源出力を直接接続すると　Aは、B出力により

電圧が引き落とされる方向に引っ張られ、逆に　

Bは、A出力により電圧が引き上げられる事にな

ります。　が、それぞれの電源のフィードバック回

路により、自分の基準電圧に合わせようと制御し

ます。

　で、お互い引っ張り合いをして、やや大きい電

流が相互に流れ　すぐに壊れる事は無くても、そ

のまま放置しておくと、お互い通常より発熱が、

大きくなり　弱い電源の方が先に壊れるでしょう。

　で、今回の場合　USB側は　いじる事が出来な

いので、外部電源の 5Vに　小さいショットキー

ダイオードを入れて、VF=0.3Vぐらいで、ESP32

側では、4.7Vぐらいになると思います。

　USB電源が、5Vで、ショットキーダイオードの

カソード出力が、4.7Vであれば、ショットキーダ

イオードからは、電流は流れ出ず、USBの電源

が、 ESP32に供給されます。

　USBケーブルが引き抜かれると、ショットキー

ダイオードから、凡そ 4.7Vが　供給されます。

　５Ｖよりは、やや低いですが、ESP32モジュー

ル上の　3.3V三端子電源ＩＣは、ロードロップア

ウトなので、三端子電源ＩＣで、生じる電圧降下

は 0.6Vぐらいと思われます。　よって、3.3V +

0.6V = 3.9V が、最低限の電圧と、なります。　

4.7V - 3.9V = 0.8Vの電圧マージンとなります。

　普通の 1A程度の整流ダイオードでも使用で

きますが、VF = 0.7Vなので、

0.4Vの電圧マージンと、なります。

Vcc 5V Vin
18

1
.5

k

Max 1A
ショットキー
ダイオード
出力: 4.7V

0.3Vの電圧降下

　今回の用途以外にも　ESP32を　使う用途で、

3.3Vと　5Vを　混在して使う場合に、役に立てば

幸いです。

　ソフトの説明動画のはずが、ハードの説明に

時間を　割いてしまいました。

　次ページから、ソフトの方へ移行します。

ハードとソフトの接点　I/Oポートの番号

　I/Oポートの番号とは、多数ある I/Oポートの

うちの　１つを指定するための番号です。

　今までのマイコンは　バイト単位で I/Oポート

と呼んでおり、バイト単位でもアクセス出来ます

が、その中のビットを　ビット単位でも　アクセス

出来るようになっていました。

　ESP32の場合は、I/Oポートの　バイト単位の

概念は、無いようです。　もしかしたら有るのか

もしれませんが、Arduino UNO等の I/Oポート

アクセスの概念を 継承したのかもしれません。

今、Arduino IDEの　環境で プログラム開発を

しているので、このビット単位の 番号で　アク

セスする事に します。

　で、今回の　７セグメントLEDの　アクセスは

７セグメント側と　一桁に １つのアノード側という

か、こちら側を　カラム側と呼ぶ事にします。

　よって　７セグメント側 ７本と、カラム側 ８本の

I/Oポートの　ビットを使用しています。

　これらを　表に しておきます。

７セグメント側　7本

信号名 I/O番号

seg_A 33

カラム側　8本

信号名 I/O番号

colon_L 15

seg_B 25

seg_C 26

seg_D 27

seg_E 14

seg_F 12

seg_G 13

colon_R 5

time_H10 2

time_H1 4

time_M10 16

time_M1 17

time_S10 18

time_S1 19
この場合の 信号名は、

ソフトで使用する定数名と　解釈して下さい。

　８桁の　７セグメントLEDアクセスは、

カラム側　8本と　セグメント側　7本に　明確に

分けてアクセスする事になります。

カラム側、セグメント側 共に　ハイアクティブで

す。 I/Oポートに HIGHを　設定すれば 点灯、

LOWを　設定すれば、消灯を　意味します。

①　カラム側の設定：

　　8本の 信号線を １本ずつ順番に　HIGHに

　　します。 ２つ以上同時に HIGH にする事は

　　ありません。

②　セグメント側の設定：

　　1個の ７セグメントLEDに　指定された数字

　　を表示するための　点灯するセグメントを

　　HIGHにします。 　よって 同時に複数点灯

　　有りです。

カラム指定信号 出力
H10 H1 CL M10 M1 CL S10 S1

結線図にすると、以下のようになります。

セグメント
信号出力

A
B
C
D
E
F
G

　上の図では、カラム選択信号の　S1 を 選択し

てます。　そして、セグメント信号出力は、　７の

文字を 表示するので、A B Cの　３セグメントを

有効に してます。

１文字 出力するための　一連の処理としては

こうなります。

７セグメントＬＥＤ ダイナミック点灯を
実現する 関数の仕様

　ソフト構築の やり方として、トップダウン式と

ボトムアップ式が　あります。　今回は、ボトム

アップ式で　行います。

　まず、ハードウェアとの接点となる I/Oポート

の宣言です。　#define を 用いて宣言します。

// I/O Port 宣言
// ---------------------------------
#define colon_L 15 // 左コロン
#define colon_R 5 // 右コロン
#define time_H10 2 // 時 2桁目
#define time_H1 4 // 時 1桁目
#define time_M10 16 // 分 2桁目
#define time_M1 17 // 分 1桁目
#define time_S10 18 // 秒 2桁目
#define time_S1 19 // 秒 1桁目

#define seg_A 33 // Segment A
#define seg_B 25 // Segment B
#define seg_C 26 // Segment C
#define seg_D 27 // Segment D
#define seg_E 14 // Segment E
#define seg_F 12 // Segment F
#define seg_G 13 // Segment G

　いきなり　33とか　25とか　ポート番号で 都度

指定するより、ソース先頭で　このように宣言して

ポートを指定する時　seg_A とか　seg_B と　指定

する方が、意味が分かりやすいですし、何らかの

理由で　ポート番号が　変っても先頭の #define

の　宣言を変えるだけで　対応出来ます。

　次は、カラムの宣言と　セグメントの宣言を

バイトデータで　指定できるようにします。

　まずは、カラムの選択ですが、カラムは　同時に複数のカラムを　選択する

事は無いので、バイト整数で 引数を渡し　0 ～ 7 の値で　カラムを　指定しま

す。　今回は　col_select(char n) という関数を用意しました。

// カラムの選択
void col_select(char n)
{
 switch(n)
 {
 case 0: digitalWrite(time_H10, HIGH); break;
 case 1: digitalWrite(time_H1, HIGH); break;
 case 2: digitalWrite(time_M10, HIGH); break;
 case 3: digitalWrite(time_M1, HIGH); break;
 case 4: digitalWrite(time_S10, HIGH); break;
 case 5: digitalWrite(time_S1, HIGH); break;
 case 6: digitalWrite(colon_L, HIGH); break;
 case 7: digitalWrite(colon_R, HIGH); break;
 }
}

　因みに　左の関数の

カラム位置の 番号は、

時の 2桁目が 0、1桁目が 1 で

分の 2桁目が 2、1桁目が 3 で

秒の 2桁目が 4、1桁目が 5 で

左から右に　時：分：秒のイメージ

で　番号が　付けられています。

時と　分の間のコロンが 6 で

分と　秒の間のコロンが 7です。

時計の場合、コロンは固定的に

扱うので、最後の 6 と　7 に

持って来ました。

　次は　７セグメントの信号を

出力する関数を用意します。

７セグメントの信号は、同時

に　複数の信号を アクティブ

にするので、バイトデータの

各ビットに　セグメント信号を

対応させます。

　こうする事により、 "0" を

表示する時は、

　　seg7_out(0x3F); に

なります。

"2" を　表示する時は

　　seg7_out(0x5B); に

なります。

次ページにて 表示する数字

に対応する セグメントデータ

の一覧を　表示します。

b0

seg_A

b1

seg_B

b2

seg_C

b3

seg_D

b4

seg_E

b5

seg_F

b6

seg_G

b7

NC

void seg7_out(char d)
{
 if((d & 0x01) != 0)
 digitalWrite(seg_A, HIGH); // Segment_A　HIGH
 if((d & 0x02) != 0)
 digitalWrite(seg_B, HIGH); // Segment_B　HIGH
 if((d & 0x04) != 0)
 digitalWrite(seg_C, HIGH); // Segment_C　HIGH
 if((d & 0x08) != 0)
 digitalWrite(seg_D, HIGH); // Segment_D　HIGH
 if((d & 0x10) != 0)
 digitalWrite(seg_E, HIGH); // Segment_E　HIGH
 if((d & 0x20) != 0)
 digitalWrite(seg_F, HIGH); // Segment_F　HIGH
 if((d & 0x40) != 0)
 digitalWrite(seg_G, HIGH); // Segment_G　HIGH
}

B

表示数字と　セグメントパターンデータの対応

b7
0

b6
0

b5
1

b4
1

b3
1

b2
1

b1
1

b0
1

G F E D C A

16進数
0x3F

b7

0

b6

0

b5

0

b4

0

b3

0

b2

1

b1

1

b0

0
16進数
0x06

b7
0

b6
1

b5
0

b4
1

b3
1

b2
0

b1
1

b0
1

16進数
0x5B

b7
0

b6
1

b5
0

b4
0

b3
1

b2
1

b1
1

b0
1

16進数
0x4F

b7

0

b6

1

b5

1

b4

0

b3

0

b2

1

b1

1

b0

0
16進数
0x66

b7
0

b6
1

b5
1

b4
0

b3
1

b2
1

b1
0

b0
1

16進数
0x6D

b7
0

b6
1

b5
1

b4
1

b3
1

b2
1

b1
0

b0
1

16進数
0x7D

b7

0

b6

0

b5

0

b4

0

b3

0

b2

1

b1

1

b0

1
16進数
0x07

b7
0

b6
1

b5
1

b4
1

b3
1

b2
1

b1
1

b0
1

16進数
0x7F

b7

0

b6

1

b5

1

b4

0

b3

1

b2

1

b1

1

b0

1
16進数
0x6F

b7
0

b6
1

b5
1

b4
1

b3
0

b2
1

b1
1

b0
1

16進数
0x77

b7
0

b6
1

b5
1

b4
1

b3
1

b2
1

b1
0

b0
0

16進数
0x7C

b7

0

b6

1

b5

0

b4

1

b3

1

b2

0

b1

0

b0

0
16進数
0x58

b7
0

b6
1

b5
0

b4
1

b3
1

b2
1

b1
1

b0
0

16進数
0x5E

b7
0

b6
1

b5
1

b4
1

b3
1

b2
0

b1
0

b0
1

16進数
0x79

b7

0

b6

1

b5

1

b4

1

b3

0

b2

0

b1

0

b0

1
16進数
0x71

BG F E D C A

void seg7_val_out(char d)
{
 switch(d)
 {
 case 0x00: seg7_out(0x3F); break;
 case 0x01: seg7_out(0x06); break;
 case 0x02: seg7_out(0x5B); break;
 case 0x03: seg7_out(0x4F); break;
 case 0x04: seg7_out(0x66); break;
 case 0x05: seg7_out(0x6D); break;
 case 0x06: seg7_out(0x7D); break;
 case 0x07: seg7_out(0x07); break;
 case 0x08: seg7_out(0x7F); break;
 case 0x09: seg7_out(0x6F); break;
 case 0x0A: seg7_out(0x77); break;
 case 0x0B: seg7_out(0x7C); break;
 case 0x0C: seg7_out(0x58); break;
 case 0x0D: seg7_out(0x5E); break;
 case 0x0E: seg7_out(0x79); break;
 case 0x0F: seg7_out(0x71); break;
 }
}

　セグメントパターンによる数字表示

バイトデータの 下位 4bit データを　数値

として扱い　seg7_val_out(char d) 関数

に　渡します。　これにより ７セグメントの

その数値に対応する 文字の形を　セグメ

ントパターンとして　表示します。

　右の例の場合　10進数の "0" ～ "9"

及び、16進数表示で使う　"A" ～ "F"を

表示します。

　表示する 桁位置は

　col_select(char n) 関数にて　指定しま

す。

　　　７セグメントLEDによる　数値表示サブ

ルーチンの　最後の関数で、

カラム位置指定と、数値文字の表示を

一つにまとめた　seg7_put 関数です。

　時計の時刻表示のカウンタ変数を　バ

イト整数を 使って行う場合、時分秒を

例えば　　char hh, mm, ss; で行うと

します。　

ss を 1秒毎にインクリメントして

ssが 60になったら　ss = 0 を 行い、

mmを インクリメントします。

mmが 60になったら mm = 0 を 行い

hhを インクリメントします。

hhが　24になったら hh = 0 に します。

(24時間制の場合) で、この時刻カウンタ

の歩進動作を行った後に　時刻を　７セ

グメントLEDに 表示します。　

//************************************
//** ７セグLED １文字　出力メイン **
//** ------------------------------ **
//** c : カラム位置 **
//** d : 表示する数値 **
//************************************
void seg7_put(char c, char d)
{
 col_select(c); // カラム指定
 seg7_val_out(d); // 数値文字の表示
}

　時刻カウンタから、７セグメントLEDに表示する値に

変更するには、時分秒の　各要素を 10 で割り、割った

答えが　2桁目になり、余りが　1桁目になります。

　今回は、ダイナミック点灯の　７セグメントLEDの

１文字表示を　メインに説明したので、時計の歩進と　

連携した表示処理は、また 改めて行います。

