
Arduino IDEにて　スケッチに ソースファイルを追加する方法

　Arduino IDEにて　最初に新規スケッチを　作成する時は、他
のアプリ同様に　左上の ファイルメニューを　クリックします。
① 参照　　これは一般的な操作なので　分かると思います。

　次に　C++用で　追加で　新規ソースファイルを　作成する時
は、右端に 点を横に３つ並べたアイコンが有ります。 ② 参照
　これを、クリックします。

　ポップアップメニューが　出てくるので　新しいタブ を　クリッ
クします。　③ 参照

　ファイル名入力の　ダイアログボックスが 表示されます。
新しいファイルの　ファイル名を入力します。　④ 参照
そして、OK　を　クリックすると　新しいファイルタブが
出来ます。　
⑤ 参照

1

2

3

4 test_Lib.h

5

　既に、５本分の　ファイルタブが出来てるスケッチに　test_Lib.h を　追加したので
計　６本の　ファイルタブが　あります。　更に　ファイルタブを　追加する場合は
② ～ ④ の操作を　繰り返して下さい。

　他のマイコンの開発環境を　扱った事のある方であれば、想像が付くと 思いますが
Arduino IDE でいう　スケッチというのは、他の開発環境でいう　プロジェクト　という事で
はないかと思います。　通常プロジェクトは　１本の実行ファイルを 作成するために 必要
な　複数のソースファイルを　管理する　器のようなものだと思います。

という事で、ソースファイルの　追加方法は理解できたと思います。

C++ 特有のコーディングについて

　という事で、Arduino IDEにおいて　追加の
ソースファイルの作成方法は　理解出来たと、
思いますが、 これで　テーブルの上に ごはん
茶碗を　置いたところで、茶碗の中は　空なの
で　この中にプログラムを　記述していく事に
なります。

　で、C++にて　ひとまとまりの　I/O処理等の　
ライブラリファイルを　作成するには、上記の
例えでいうと　茶碗が　２つ必要です。

　クラス等の型を宣言するヘッダーファイル
（ 拡張子 .h ）と、クラスのメンバー関数を記述
する　拡張子 .cppの ファイルの　２つです。

　で、今回は　押しボタンスイッチのスキャニン
グ処理の説明も　行う予定ですので、
pb_sw.h と　pb_sw.cpp を　使って　C++特有の
記述方法を、説明します。

　尚、C++は　Object指向言語ですが、Object
指向の　説明は　抽象的で難しく　かなり長くなる
ので、今回は しません。　

　C言語を知っている方を　前提に　話をして行き
ます。　クラスに関わる宣言は、さしあたり、一律
このように宣言するものだ。　という事で　記述す
る形だけ憶えて下さい。

　最近は、もう Object指向言語は　当たり前に
なってきて、Object指向の話も あまり聞かなく
なっています。　じゃ、最近のプログラマは、全て
Object指向の事を　理解しているのかというと
そうではないと思います。

　一部の方は　しっかり理解されてる方もいると
思いますが、大多数の方は　あまり理解して無い
と思います。　これは　プログラミング言語の改良
で　難しい事を理解しなくても　やさしく使えるよう
になってきたからだと思います。

ヘッダーファイル .h に　関して

　Object指向で　探したら C++言語は 型宣言
を 厳密に行う言語と　書いてありました。
　C++で　型宣言を行う場所は　ヘッダーファイ
ル　.h 内です。　クラスの型宣言は　ヘッダー
ファイルにて行います。　その他、必要に応じて
定数等の宣言も　行います。

　で、ヘッダーファイルは　そのクラスのメン
バー関数を　実装する .cppファイルの先頭で
読み込まれます。
　それと、そのクラスを使用するメインとなる　
ソースファイル （ Arduino環境であれば　.ino
ファイル ） の先頭でも #includeで　読み込まれ
ます。　今回の例としては　先頭にて　
#include "pb_sw.h" という形で、宣言します。

　それと、細かい事ですが　#include 右側の
ファイル名を　囲む　< >と　" " ですが、少し
意味が　異なります。

　< > は、言語標準の フォルダから　指定した
ファイルを　読み出します。　それに対し　" " は
スケッチのフォルダ内で　ファイルを　読み出しま
す。　ファイルが存在しない場合は、コンパイル
時　エラーが出ます。　よって、自分で　コーディ
ングしたライブラリは　" " を 使用します。
　よって、今回の　押しボタンスキャンのライブラ
リは　#include "pb_sw.h" に　なります。

　まずは、ヘッダーファイルのお約束事を 一つ紹
介します。　ヘッダーファイルは　１回読み込んだ
後に、また読み込むと　２回目は　エラーに　なり
ます。 ２回読み込まないように注意すればいい。
ともいえますが 大プロジェクトで、ソースファイル
が　百本もあると、チェックが　結構手間という場
合もあります。　よって、自動的に　２回目読み込
まないようにする方法が　あります。 次に　紹介
します。

#ifndef pb_sw_h
#define pb_sw_h

ここに　本来のクラス宣言等を行う。

#endif

　先頭に　# のついた予約語は　マクロと呼ば
れます。　これは、C言語の時代から　ありまし
た。　
先頭の　#ifndef pb_sw_h は　pb_sw_h という
文字列が宣言されて無ければ　以下の行から
#endif まで コンパイラにて読み込まれます。

#ifndef pb_sw_h の 次の行で　#define pb_sw_h
が、宣言されています。　#define は、文字列の
宣言です。　この文字列は　一種の名前のよう
なものです。　文字列を　スペースで区切って
２つ文字列を設定する事も出来ます。

　pb_sw.h
で、#define pb_sw_h を　宣言すると、その後　再
度 pb_sw.h を　読み出しても　pb_sw_h が　既に
コンパイラ上で　宣言されているので、２回目の
読み出しでは　#ifndef pb_sw_h は　成立しないの
で、#ifndef　以下の　コーディングは　#endif まで
の間、コンパイラが 読み込みません。 　この機
能により、同じ名前の 多重宣言エラーを　回避し
ているという事です。
　それと　#define は　スペースで区切って２つの
文字列を設定できると書きましたが、これは、
最初の文字列が　ソース内に出てきたら　２個目
の文字列に　置き換えられます。　例えば

#define PBSW_1 36 と　宣言すれば、PBSW_1の
文字列を　36 の 文字列に置き換えてくれる。
という事です。　この場合は　I/Oポートの番号を
PBSW_1 と いう意味の分かる文字列に　しておく
事が、出来るという事です。
　では、 pb_sw.h の ソースを　見てみましょう。

#ifndef pb_sw_h // 多重宣言の回避
#define pb_sw_h

// I/O Port 宣言
// ---------------------------------
#define PBSW_1 36 // 押しボタンSW 1
#define PBSW_2 39 // 押しボタンSW 2
#define PBSW_3 34 // 押しボタンSW 3
#define PBSW_4 35 // 押しボタンSW 4
#define PBSW_5 32 // 押しボタンSW 5
#define PB_CONT 375 // 長押し検出値
#define PB_CONT_IVL 25 // 繰り返しインターバル

// 押しボタンSW　処理クラス
// -------------------------------------
class Pb_Scan
{
 public:

　pb_sw.h 1/2
　先頭にある　#ifndef pb_sw_h と
次の行の　#define pb_sw_h については
前ページで説明したので省略します。

次に　#defineで　押しボタン１ ～ ５ の
I/Oポート番号を 意味の分かりやすい
名前で　宣言しています。

PB_CONT 375 と　PB_CONT_IVL　25 は
単位時間 4msの　時間設定値です。
　PB_CONT　ボタンを 押し始めてから、
1.5秒経過(　0.004 * 375 = 1.5　) で　長押
し検出開始で 時刻設定のインクリメント、
デクリメントを高速で ボタンを離すまで
繰り返し行います。　PB_CONT_IVLは
繰り返し周期です。 0.004 * 25 = 0.1秒
です。　class Pb_Scan は　クラスの 型
宣言の 開始です。 public: は　これよ
り下の宣言は、どこからでもアクセス可能
な広域的宣言である事を　意味します。　

 Pb_Scan(); // コンストラクタ
 ~Pb_Scan(); // デストラクタ

 void init(void); // ポート初期化
 char pb_scan_proc(void); // スキャニング メイン
 // １個の スイッチの状態を取り出しスイッチ状態の履歴を更新
 unsigned char get_inp_sft(int ioa, unsigned char sft);
 private:
 unsigned char sft_1;
 unsigned char sft_2;
 unsigned char sft_3;
 unsigned char sft_4;
 unsigned char sft_5;
 unsigned char sws;
 unsigned char sws2;
 unsigned char dvc;
 short swcn;
};

#endif

　pb_sw.h 2/2
クラス名と同じ　Pb_Scan();
関数は　コンストラクタ （ 初期
化処理 ） です。 頭に　チルダ
を付けた ~Pb_Scan(); 関数は
デストラクタ (廃棄処理) で
す。　このコンストラクタ、デスト
ラクタは　C++の 毎回のお約束
と　思っていて下さい。

　init（）関数は 押しボタン関
係の I/O初期化処理です。

　pb_scan_proc 関数と、get_inp_sft 関数は　ソース内の コメント通りの
関数です。　細かい事は、また後で 説明します。

次に　private: は　このクラス内の関数しかアクセス出来ない変数を
宣言しています。　変数だけでなく　private: の 関数も　宣言出来ま
す。 今回は 必要無かったので、private: 関数は 宣言して いません。

unsigned char の　変数を　8個と　2byte整数の変数を　１個宣言して
います。

#include <Arduino.h>
#include "pb_sw.h"

Pb_Scan::Pb_Scan() // コンストラクタ
{
 init(); // I/O ポート初期化
}

Pb_Scan::~Pb_Scan() // デストラクタ
{
}

void Pb_Scan::init(void) // ポート初期化
{
 pinMode(PBSW_1, INPUT);
 pinMode(PBSW_2, INPUT);
 pinMode(PBSW_3, INPUT);
 pinMode(PBSW_4, INPUT);
 pinMode(PBSW_5, INPUT);
}

　pb_sw.cpp 1/4 　先頭で、#include <Arduino.h> を　行ってます
が、これを入れないと 標準の入出力関数の
pinMode 関数、digitalWrite 関数、digitalRead
関数が　使えません。I/O処理を行う時は 必須
です。　#include "pb_sw.h" は、pb_sw.cpp用の
ヘッダファイルなので これも必須です。

コンストラクタですが、Pb_Scan::Pb_Scan() の
左側の　Pb_Scan:: は、クラス Pb_Scan 内の
メンバー関数である事を　示していると思いま
す。 :: 右の Pb_Scan() は　クラスと同じ名前
で　この同じ名前は　暗黙の了解で　コンストラ
クタを意味します。　同様に ~Pb_Scan() は　デ
ストラクタを意味します。　コンストラクタは　主
に初期化処理を行います。　ここでは、init()関
数を　呼び出し ５つの I/Oポートを 入力に初
期化しています。 で、デストラクタですが、パソ
コンアプリであれば必要と思いますが、組み込
み用途であれば、まず使わないと思います。

　あと、クラスのコンストラクタは　いつ呼び出さ
れるのだろうか。？　と　不思議に 思われるか
もしれませんが、　クラスを 実行できるように
インスタンス （ メモリ上に存在する実態 ）を
生成していれば、システムのスタートアップ処
理にて　自動的に呼び出されるようです。
で、インスタンスを生成するとは、
変数を　宣言するのと同じです。
seg7_pbsw.ino 先頭の方に　
static Seg_7 seg7; // 7セグメントクラス
static Pb_Scan pbs; // 押しボタン スキャン
処理
が、あります。　先頭の static は この場合、
あっても無くても問題ないです。　static は、
静的という意味もありますが、もう一つ、スコー
プ範囲が　生成したファイル内だけになりま
す。別のソースファイルからアクセスする場合
は、static 宣言を 取らなければなりません。

// スキャニング メイン　
char Pb_Scan::pb_scan_proc(void)
{
 unsigned char ssw, n, m;

 sft_1 = get_inp_sft(PBSW_1, sft_1);
 sft_2 = get_inp_sft(PBSW_2, sft_2);
 sft_3 = get_inp_sft(PBSW_3, sft_3);
 sft_4 = get_inp_sft(PBSW_4, sft_4);
 sft_5 = get_inp_sft(PBSW_5, sft_5);
 sws = 0; n = 0;
 if(sft_1 == 0x0F) { sws |= 0x01; n++; }
 if(sft_2 == 0x0F) { sws |= 0x02; n++; }
 if(sft_3 == 0x0F) { sws |= 0x04; n++; }
 if(sft_4 == 0x0F) { sws |= 0x08; n++; }
 if(sft_5 == 0x0F) { sws |= 0x10; n++; }
 if(sws == 0) { swcn = 0; sws2 = 0; dvc = 0; }
 if(sws2 == sws) swcn++;
 else swcn = 0;
 if(swcn > PB_CONT) swcn = PB_CONT;

　pb_sw.cpp 2/4
　押しボタンスキャニングの メイン関
数　pb_scan_proc() 関数です。
ちょっと、ややこしくて申し訳ないです
が　左のソースを見てもらうと 行毎に
1　2　3　4　5 の番号の付いた変数が
ありますが、そのまま押しボタンの番
号と対応しています。

　get_inp_sft（）関数が　１個の押しボタ
ン信号を取り込むと同時に　最新の
4サンプル分のデータを byteデータの
下位４bit のビット並びで表現していま
す。 ビットデータの更新は　ビットデー
タを　左シフトして、その後最下位 bit
に 最新の押しボタンデータの ONを 1
として設定しています。 上位 4bit は　
常時 ゼロにしています。
 変数の sft_1 というのは シフトステー
タスの ボタン１という意味です。

 sft_1 = get_inp_sft(PBSW_1, sft_1);

 sft_5 = get_inp_sft(PBSW_5, sft_5);
 sws = 0; n = 0;
 if(sft_1 == 0x0F) { sws |= 0x01; n++; }
 if(sft_2 == 0x0F) { sws |= 0x02; n++; }
 if(sft_3 == 0x0F) { sws |= 0x04; n++; }
 if(sft_4 == 0x0F) { sws |= 0x08; n++; }
 if(sft_5 == 0x0F) { sws |= 0x10; n++; }
 if(sws == 0) { swcn = 0; sws2 = 0; dvc = 0; }
 if(sws2 == sws) swcn++;
 else swcn = 0;
 if(swcn > PB_CONT) swcn = PB_CONT; // Limit処理

　pb_sw.cpp 2/4 　左にソースを表示して無いと、説明が
し難いので　また表示しました。
　押しボタンのシフトデータの 状態は
左下の図を　参照して下さい。

　sft_1 ～ sft_5 の各変数の状態は、
0x00が ボタンが押されて無い状態。
0x07が ボタンが押された瞬間を検出。
0x0Fが ボタンが押されたままの状態。
0x08が ボタンが離された瞬間を検出。
左ソースの　sft_1 == 0x0F から　sft_5
== 0x0F の if 文は　sws に 押されてい
る bit番号を 1にして n++ をしています
が、5個の if 文を 通り nが　1 なら １つ
しかボタンが押されてない事を　意味し
ます。　n が　2 以上なら押しボタンを
多重押ししているという事です。
if 文の　sws2 == sws は　押されている
ボタンが、押した瞬間のボタンと同じで
ある事を確認しています。

0 0 0 0 0 0 0 0 0x00　押しボタンが　押されて無い状態

0 0 0 0 0 1 1 1 0x07　押しボタンが　押された瞬間を検出

0 0 0 0 1 1 1 1 0x0F　押しボタンが　押され続けている状態

～ ～～

0 0 0 0 1 0 0 0 0x08　押しボタンが　離された瞬間を検出

 ssw = 0; m = 0;
 if(sft_1 == 0x07) { ssw |= 0x01; m++; }
 if(sft_2 == 0x07) { ssw |= 0x02; m++; }
 if(sft_3 == 0x07) { ssw |= 0x04; m++; }
 if(sft_4 == 0x07) { ssw |= 0x08; m++; }
 if(sft_5 == 0x07) { ssw |= 0x10; m++; }
 if(ssw != 0) sws2 = ssw;
 if((ssw != 0) and (n > 0)) ssw = 0;
 if(m > 1) ssw = 0;
 if((sws2 & 0x18) != 0) // Inc Dec ボタンの時のみ効くようにする
 {
 if(swcn == PB_CONT) // ボタンを押して 1.5秒ほど経過
 {
 dvc++;
 if(dvc == PB_CONT_IVL) // 連続 Inc or Decを出すインターバル
 {
 dvc = 0;
 ssw = sws2;
 } } }
 return ssw;
}

　pb_sw.cpp 3/4

　上から５個の　if 文は シフトステータスを 0x07
 と、比較しているので　押しボタンが　押された
 瞬間を　検出しています。　ssw に どのボタンが
 押されたか bit 位置にて ssw変数に格納して、
 m変数を　利用して 一度に 複数 押しボタンが
 押されて無いか確認しています。

　下半分の　処理は、上下押しボタンの Inc、Decの　長押しによる
 連続　Inc Dec 信号を　高速に出すための　判断処理です。
 ちょっと、ややこしいので　興味のある方は　ソースを　ダウンロード
 して見て下さい。

// １個の スイッチの状態を取り出し スイッチ状態の履歴を更新する
unsigned char Pb_Scan::get_inp_sft(int ioa, unsigned char sft)
{
 unsigned char sw;

 sft = sft << 1; // 1bit 左シフトして 最下位bitを 開ける
 sw = digitalRead(ioa); // 目的の PBスイッチの状態を取り出す
 if(sw == LOW) sft = sft | 1;
 // PBスイッチ＝LOWであれば 最下位bitを 1 にする
 sft = sft & 0x0F; // 下位 4bitのみ残す

 return sft;
}

　pb_sw.cpp 4/4
やっと終りに来ました。

get_inp_sft(） 関数は　前
のページで、多少説明し
たので、凡そやっている
事は、分かると思います
が、引数で もらい受け
た sft 変数を １ビット左
シフトして、最下位ビット
を　開けます。　そして
digitalRead()関数で、押
しボタンスイッチの状態
を　読み出します。

　押しボタンスイッチの状態が　LOW （ 接点が ONで 閉じている ）で あれば、1 を　sft 変数の
最下位ビットに　入れます。　因みに　左シフトした状態では、最下位ビットは　ゼロに なってます。
sft = sft & 0x0F; // 下位 4bitのみ残す　は、上位４ビットを　ゼロにしています。
そして、　ｓｆｔ　の値を　関数値として　返します。

　視聴者の皆様が　I/O処理のプログラムを作成するとき、多少でも　役に立てば幸いです。

