
ESP32と SDカード基板の接続 （改） PullUp抵抗の追加

　前回の接続図にて、ＰｕｌｌＵｐ抵抗の抜けが　ありした。

追加しておきます。 使用する ESP32は　ESP32-WROOM-32

の DEV-KIT 30ピンの基板です。

SCK

MOSI

MISO

SS

SW

信号名

3.3V

GND

GPIO18

GPIO23

GPIO19

GPIO5

GPIO4

I/O名

SPIで予約
されている

ピン

ESP32側
秋月電子
SDカード

基板ピン番号

①　DAT2

②　DAT3/CS

③　CMD

④　VDD

⑤　CLK

⑥　VSS

⑦　DAT0

⑧　DAT1

⑨　スイッチB

⑩　スイッチA
　青の線が　ESP32の 出力線で、緑の線が

ESP32の 入力線です。 　赤が　3.3V 電源線です。

灰色が　グランド線です。　

そして、⑥と　⑩を　結線します。

1k

2k

2k

10k

10k

　PullUp抵抗
 とコンデンサ

追加

CLKが、最も高速動作するので　1kΩに します。
CMDと DAT0が 次に高速動作するので　2kΩに
します。　他は 10kΩと します。

0.1u

　0.1uFの積層セラコンを
VDD-VSS間に 入れました。

SDカードアクセス、セクタの概念

　ハードの準備は出来たので 次はソフトです。

いきなりアルディーノライブラリで、SDカードを

アクセスしてもいいですが、その前に　ちょっと

SDカードの事、FATファイル管理の事について

説明します。　

まず、SDカードに限らず、HDDもそうですが、

物理的には　1byte単位では　アクセス出来ま

せん。　セクタと呼ばれるアクセス単位が　あり

ます。　SDカードも、HDDも 1セクタは 512byte

です。　昔の事で　恐縮ですが

　昔のフロッピー 2HDとかは、フォーマットによ

り、１セクタが 256、512、1024 byteとか 変化し

ます。　但し、1セクタのサイズを大きくすると、

１トラックに入るセクタ数が、少なくなります。　

よって １トラックに 　byte数が　最大に　なるセ

クタサイズを　選択されてました。

　　　　　　　　HDDの様な回転する高速記憶媒体

は、ヘッド、トラック、セクタという概念が　ありまし

た。 ヘッドは　回転する磁性体円盤が、1枚の場

合は、ヘッドは　円盤の表、裏にあります。　トラ

ックは　陸上競技のトラックと同様に　同心円状

の 円周を指します。　そして一つのトラックを　細

かい回転角で分けた円弧状の区画を　セクタと

いいます。　特にトラック間の移動は、ヘッドシー

クといって、機械的にヘッドをマウントした　キャ

リッジを移動させます。　よってヘッドシークは　

やや時間がかかります。 そして所定のトラックに

来て　トラック内の目的のセクタを　読み書きでき

る位置に来るまで、待つ時間を　回転待ち時間と

いいました。　よって、機械的な待ち時間が存在

するので、いかに高速にアクセスするか、ヘッド、

トラック、セクタの パラメータ調整が　

アクセスタイムの向上に重要でした。

　SDカードや　USBメモリには、ヘッドや　トラッ

クという概念は　有りません。　USBメモリは

分かりませんが、SDカードは　1セクタのサイズ

は　512byteです。　そのセクタが　桁の大きい

連番で管理されています。　SDカード内のフ

ラッシュメモリ内のセクタの区画は、別の物に

例えると、１要素 512byteの データの 巨大な

配列と見る事が出来ます。　どの要素のデータ

を取り出すかは、配列の添え字で指定します

が、それが　SDカードのセクタ番号という事で

す。　で、このセクタの概念が　FATファイル管

理システムにも密接に関係してきます。

　アプリからは、ファイル名を指定して　ファイ

ルを　アクセスします。　そして書き込んだり、

読み出したりするデータのサイズは、任意に指

定できます。　それが、最終的に物理層に行く

と、512byteのセクタ単位になる という事です。

アプリ
ファイル名指定

　　　　　FATファイル管理システム

ディレクトリ
エントリテーブル

アクセス

FATファイル管理
アクセス処理

予
約

領
域

ル
ー

ト
 デ

ィ
レ

ク
ト

リ
エ

ン
ト

リ
 テ

ー
ブ

ル

F
A

T

デ
ー

タ
領

域

SDカード内部の領域

ごく簡単な例です

　ディレクトリエントリテーブルは　遥か昔　MS-

DOSの時代は　ファイル名が ファイル名 8byte

と　拡張子 3byteで　32byteの ディレクトリエン

トリテーブルで、１個のファイルを管理していま

した。 FATのエントリポイントや、ファイルサイ

ズが、格納されています。　長いファイル名に

対応する方法は、この32byteのディレクトリエ

ントリテーブルを連結して長いファイル名に対

応していました。　サブディレクトリの対応は、

データ領域に　新たにディレクトリエントリテー

ブルを作成するという方法で 対応しています。

　このような　FATの情報は、昔 90年代　MS-

DOSから Windowsへの 移行時期の頃に　書

籍が ありました。

　Windowsの NTFSとかは、全く構造が異なると

思います。

SDカードアクセスの ライブラリ

　ちょっと余談が過ぎましたが、本来の話に入り

ます。　まず、Arduino IDEの ライブラリで　

SDカードを　アクセスするには、以下の ２つの

インクルードファイルを 取り込みます。

#include <SPI.h>

#include <SD.h>

　それと、１ページ目で　SS（ スレーブセレクト ）

信号を　GPIO5 (5) に　設定してましたので、

setup関数内にて
　Serial.begin(115200);// シリアルオープン

　if(SD.begin(5)) // SD オープン

　　　Serial.println("SD Ready."); // SD OK

　else {

　　　Serial.println("SD Error."); // SD NG

　　　while(1);　

　｝　 を　行います。 エラーが　起きたら

そこで止まるように　しておきます。

　ファイルの　オープンは、　ファイルのオブジ

ェクト　を 関数先頭で宣言します。

File　f; 左のように宣言します。

　今回は　データロガーを 想定しているので

ファイルを新規作成して　データを書き込み続け

る使い方を　想定します。

　ファイルのオープンは、書き込みモードで

オープンします。

f = SD.open("/test.dat", FILE_WRITE);

　で、ファイル名文字列の先頭に / を付けてい

ますが、これが無いとファイルのオープンに失敗

します。　で、この場合は、ルートディレクトリ上

に　ファイルを作成します。 遥か昔は ファイル

名 8文字、拡張子 3文字でしたが、今回、18文

字のファイル名で　ファイルを 作成できる事を

確認しました。

ファイルの　オープンと　クローズ
　FILE_WRITEの 意味ですが、指定されたファイ

ル名が、無い場合はファイルを　新規作成し、先

頭に書き込み位置を設定します。　指定された

ファイル名が　ある場合は、ファイルをオープンし

て先頭に書き込み位置を設定します。

　ファイルの書き込み処理を終了する時は　ファ

イルのクローズ処理を　行います。

f.close();　　を　行います。

　データの書き込み：

今回は、バイナリコードを含んだ固定長の１レ

コードの　バッファを書き込みます。　この場合

データを　構造体にした方が便利です。 Rec と

いう構造体を　書き込む場合は

f.write((uint8_t *)&Rec, sizeof(Rec));

と、なります。　ちょっと難しそうにみえるので、

バラして説明します。

f.write((uint8_t *)&Rec, sizeof(Rec));

　f.writeの 引数として渡すのは、第一引数は　

データのポインタで、第二引数は、データのサイ

ズ（ byte単位の値 ）です。

　第二引数の sizeof() は 演算子で、引数のデー

タの大きさを返します。　int だったら　4 に

なります。　で、第一引数の方ですが、Recという

構造体変数に　& が 付いてます。 &は その変数

が、配置されるメモリの先頭アドレスを 返す演算

子なのです。 （uint8_t *）は パソコン上の C言語

であれば、(char *) となります。　これらは　一般

にキャストと呼ばれます。　データの型を　引数

の型に 合わせて渡すための演算子です。

uint8_t は ESP32独自の型なのか、あるいは　

Arduino環境の 独自の型なのかは　分かりませ

んが、独自の型と思われます。

　パソコンであれば　(char *)で　OKです。

どちらも、byte単位のデータ型なのに 異なる名

前を 付けてある関係で、(uint8_t *)の所に　

(char *) を 置くとエラーになります。　よって、

ESP32の f.write の第一引数には　(uint8_t *) の

キャストを　付けて下さい。

シーク関数：　ファイル上の読み出し、書き込み

位置を　移動させる関数です。

例）　f.seek(0); 引数は ファイル先頭から

の byte単位の 移動量となります。 0 で あれば

ファイル先頭に、書き込み、読み出し位置を戻す

事になります。

ファイルサイズを得る関数：　byte単位の ファイ

ルサイズを　得る関数　n = f.size(); が あり

ます。　今回は、使いませんでした。

　

ファイルの削除：

SD.remove("test.dat");　ファイル名を指定して　ファイルを削除する関数です。　削除する

ファイルが、無い場合は、関数値で、False が 戻るだけで、支障はないです。

今回、遭遇した障害：
今回、データレコード構造体として、以下の 128byteの構造体の型宣言をしました。
typedef struct {

 int id, cnt;

 char ttl[24];

 char tx[96];

} RECORD;

そして、構造体変数　Recを 宣言をしました。

static RECORD Rec;

次に　setup関数内にて、Recのメンバー変数 txに ASCIIコード 96文字を入れました。
 for(i=0; i<96; i++) {

 Rec.tx[i] = i + 32;

 }

ところが、loop関数内で使ったら、ASCIIコードが　Rec.txの中に入って無い。？

　これは、コンパイラのオプティマイザにより、

setup関数内にて、ASCII文字データを 設定し

た後、setup関数内では、何も ASCII文字デー

タを利用して無いので 意味のないコーディング

という事で、オプティマイザによる最適化が実

行されてコーディングが　外された物と思われ

ます。　これを避けるためには、影響を受ける

変数を 宣言している箇所で　Volatileを 追加す

る事で 最適化を　抑える事が出来ます。

//static RECORD Rec; // 変更前

volatile static RECORD Rec; // 変更後

　という事で、今回はファイル名先頭に / を

付ける事と、最適化の悪影響を受ける場合は

該当する変数宣言に volatile を 付ける事の２

点で、後は 順調にプログラム開発が進みまし

た。

　今回は、テストプログラムによりテストデータを

５本書き出しました。
void loop() {

 data_write("/test_01.dat", 'A', 200);

 data_write("/test_02.dat", 'B', 400);

 data_write("/test_03.dat", 'C', 600);

 data_write("/test_04_ABCDE.dat",

 'D', 800);

 data_write("/test_05_0123456789.dat",

 'E', 1000);

 while(1);

}

　data_write()関数が １本、データファイルを書き

出す処理です。最初の引数がファイル名で、2番

目が １レコードで　同じ文字を８個書き込んでい

ます。　３番目の引数が、書き出すレコード数で

す。　最後は　1000レコード書き出しました。

全て、無事 書き出せました。

SDカードに出力したデータの Hexダンプ

FileName = F:\test_01.dat Record = 0 2024/09/07
 Id cnt ttl
0000 00 00 00 00 C8 00 00 00 41 41 41 41 41 41 41 41 ﾈ...AAAAAAAA
0010 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0020 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F !"#$%&'()*+,-./
0030 30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F 0123456789:;<=>?
0040 40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F @ABCDEFGHIJKLMNO
0050 50 51 52 53 54 55 56 57 58 59 5A 5B 5C 5D 5E 5F PQRSTUVWXYZ[\]^_
0060 60 61 62 63 64 65 66 67 68 69 6A 6B 6C 6D 6E 6F `abcdefghijklmno
0070 70 71 72 73 74 75 76 77 78 79 7A 7B 7C 7D 7E 7F pqrstuvwxyz{|}~.
0080 01 00 00 00 00 00 00 00 41 41 41 41 41 41 41 41 AAAAAAAA
0090 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00A0 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F !"#$%&'()*+,-./
00B0 30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F 0123456789:;<=>?
00C0 40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F @ABCDEFGHIJKLMNO
00D0 50 51 52 53 54 55 56 57 58 59 5A 5B 5C 5D 5E 5F PQRSTUVWXYZ[\]^_
00E0 60 61 62 63 64 65 66 67 68 69 6A 6B 6C 6D 6E 6F `abcdefghijklmno
00F0 70 71 72 73 74 75 76 77 78 79 7A 7B 7C 7D 7E 7F pqrstuvwxyz{|}~.

　このダンプリストは 　1レコード 256byteで
今回のデータレコードは 1レコード 128byteなので
データ先頭の　２レコードを ダンプ表示してます。

　Idは　0 から始
まる レコード番
号です。

　cntは　書き込
んだレコード数
です。
因みに　C8hは
200 です。

１レコード 128
byteの内 後ろ
の 96byteは AS
CII文字です。

使用開発環境の バージョン等

ESP32-WROOM-32
mode:DIO, clock div:1
load:0x3fff0030,len:1448
load:0x40078000,len:14844
ho 0 tail 12 room 4
load:0x40080400,len:4
load:0x40080404,len:3356
entry 0x4008059c

Arduino IDE
バージョン：2.3.2
日付：2024-02-20
CLIバージョン：0.35.3
Arduino ESP32 Boards
by Arduino
2.0.13 intalled

