
Ｉ２Ｃ　マイコンと デバイスの 接続

SCL SDA

マイコン

SCL SDA

デバイス.１

SCL SDA

デバイス.２

SCL SDA

デバイス.３

Vcc

I2Cバスの接続図

　I2Cは SCL：シリアルクロック信号、SDA: 双方向

データ信号の ２本の信号線で構成されます。　標準

的な転送速度は 400Kbpsです。　デバイスによって

は、更に早い物もあります。　 また、Read/Writeコマ

ンドに 7bitのアドレスも付くので、２線に アドレスの異

なる複数のデバイスを接続する事が出来ます。

　プルアップ抵抗は必要ですが、デバイスに内蔵され

ている場合も　あります。　その場合は、デバイスの

複数接続を考慮して　やや高めの抵抗値にしてあり

ます。

長
所

①　信号線２本＋GNDでデバイスと通信可能。

②　複数デバイスを接続する事が可能。

　　複数デバイスを接続しても、信号線は２本

　　のままで、ＯＫ。　但し 各デバイスのアドレ

　　スは、重複させてはならない。

Ｉ２Ｃ

短
所

①　ＳＰＩ と比べると データ転送速度が遅い。

　という事で、データ転送速度が　あまり問題になら

なければ、 I2Cは 気軽に使えると思います。

SCL 一方方向

SDA 双方向

I2C通信シーケンス (1)

　I2C通信は、SCLと SDAの２本の信号線
を用います。待機中 SCLと SDAは、両方
とも Hiレベルです。

[1] スタートコンディション：
 今から通信シーケンスを開始する事を
マスタが、スレーブに通知するための信
号です。　SCLが、Hiの期間中に SDAを
Hiから Lowに変化させます。
[2] ストップコンディション：
　マスタが、スレーブに対し通信を終了
させる時に出します。　SCLが、Hiの
期間中に SDAを Lowから Hiに変化させ
ます。

SCL

SDA

スタート
コンディション

SCL

SDA

ストップ
コンディション

Time Time

通常のデータビットでは、SCLが Lowの
期間中に、SDAを変化させるので、デー
タビットと、スタート／ストップ コン
ディションは、区別出来ます。

SCL

SDA

通常のデータビット

Time

1 0 0

1,0,0 の 3bit出力例

I2C通信シーケンス (2)

[3] リピートスタートコンディション：
　8ピンの EEPROMをアクセスする際に
リピートスタートコンディションを発行
する場合があります。
①　SCLが、Lowの期間に一旦、SDAをHi
　　にします。
②　SCLを Hiにします。
③　SDAを Lowにします。　

最近は、殆どのマイコンに、データ用フ
ラッシュROMが入っている事もあり
外付けで 8pinのシリアルEEPROMを使う
事が、少なくなってきました。
　これにより、リピートスタートコン
ディションを使う機会も減ったように思
います。

　いかし、まだリピートスタートコン
ディションが 必要なデバイスが、一部
存在します。 殆どの場合、コマンド
Writeから、データ Readに 連続して切
り替える用途で 使われます。

SCL

SDA

リピートスタートコンディション

Time

① ② ③

I2C通信シーケンス (3)

[4] I2Cコントロールバイト：
スタートコンディション直後、最初に
出力するバイトデータが、コントロール
バイトです。今回は、7bitアドレスで
説明します。 10bitアドレスも規格上は
ありますが、私は使った事が無いです。
①　一旦 SCLをLowに降ろします。
②　スレーブのI2Cアドレスの A6 ～ A0
　　の 7bitを 順次 bit単位でスレーブ
　　に書き込みます。
③　次にデータを書込む際は、Write
　　(SDA=Low)、読出す際は、Read
 (SDA=Hi)を、1bit 出力します。
　　スレーブからの ACK/NAK(1bit)を
　　受け取ります。

SCL

SDA

I2C コントロールバイトの出力
Time

A6 A5 A4 A3 A2 A1 A0 ACK

マスタ出力
スレー
ブ出力

[5] データバイト出力（Write）：
　　内容(データ)が異なるだけで、コン
　　トロールバイト出力と同じです。

SCL

SDA

I2C データバイトの出力
Time

D7 D6 D5 D4 D3 D2 D1 D0 ACK

マスタ出力
スレー
ブ出力

R/W

I2C通信シーケンス (4)

[6] データバイト入力（Read）：
　　SDAの出力元が、入れ替わるだけで
　　シーケンスは、同じです。

SCL

SDA

I2C データバイトの入力
Time

D7 D6 D5 D4 D3 D2 D1 D0 ACK

スレーブ出力
マスタ
出力

[7] 一連の電文シーケンス例：
I2Cスレーブアドレス 3Ch に、

　　40h、41hのデータ2byteを 書き込む
　　例です。
①　スタートコンディションを実行。
②　7bitAddress = 3CHでコントロール
　　バイト(Write)を、出力します。
③　データ40hを データバイトとして
　　出力します。
④　データ41hを データバイトとして
　　出力します。
⑤　ストップコンディションを実行。

　ACK／NAKに関して：
　通常、通信制御コードの ACK、NAKは、肯定応答、否定応答の意味で、送り元が、受信
　側からNAKを受け取った場合は、再送信等のエラーリカバリ処理を行います。が、I2Cは
　どちらかというと、転送する最終バイト識別の意味合いで用います。

ESP32の　Ｉ２Ｃ出力ピン

　ESP32にて、I2Cインタフェースを使用する時

は 使用するピンが、決まっています。　今回使

用する ESP32は　ESP32-WROOM-32の

DEV-KIT 30ピンの基板です。

　　GPIO22 が　I2C　SCL です。

　　GPIO21 が　I2C　SDA です。

　ESP32 ＆ Arduino IDE環境で 使用する

I2Cの ライブラリは　Wire です。　

よって インクルードするファイルは

#include <Wire.h> です。

この　Wire という ライブラリは　ラズベリーパイ

でも　同様の物が ありました。

使用する　I2C ３軸加速度センサ基板

　今回、使用する　I2C ３軸加速度センサ基板は

MM8452Qという　ICを付けた_3軸加速度センサ

基板です。 Amazonで ４個 999円を 買いました。

ちゃんと動くかな。？　ちょっと不安。

今回の　I2C ３軸加速度センサ基板の、画像で

す。　コネクタピンの　信号名は、基板裏側に書

いてあります。

今回の ３軸加速度センサ基板回路図

　基板内に 3.3Vの三端子電源ICが 載せ

てあります。　よって電源は、5Vで供給し

SCL、SDAの信号線は 3.3V仕様となりま

す。　基板内で 専用の 3.3Vを作っている

　のは、好ましい事と思います。

　I2C デバイスアドレスは

AD0を　基板内R6で Low

に 落してあるので AD0を

Openの場合は 1C h、

AD0を Highにした場合

1D hになります。

今回は、デバイス

アドレスは 1Chで

使用します。

ESP32-WROOM-32

ESP32 と　MMA8452Q基板の接続

　ESP32と　3軸加速度センサ MMA8452Q基板

の接続図です。

Vin 5V

GND

GPIO22/I2C-SCL

GPIO21/I2C-SDA

MMA8452Q基板

①　Vcc_IN

②　3.3V

③　GND

④　SCL

⑤　SDA

⑧　INT1

⑦　INT2

⑥　SA0 （ AD0 ）

モジュール間の結線

 （）内は 電線の色　

　　Vcc 5V (赤)

　　GND　　 (黒)

　　SCL　　 (黄色)

　　SDA　　 (白)

の　４本です。

　今回は、MMA8452Q基板に　必要な抵抗、コン

デンサ等が 一通り付いているので、小基板に

部品を追加する必要は 無かったです。

センサ基板 裏側

MMA8452Qの初期設定と データ読み出し

　秋月電子でも、MMA8452Qを使った基板を、

過去に販売していて、その商品の簡易 取扱い

説明書を　サイトで公開していたのでダウン

ロードしました。　今は　売って無いようです。

　その取扱い説明書の裏面に Arduinoを対象

としたサンプルプログラムを載せてありました。

　そのプログラムをベースに使って MMA8452Q

を　アクセスしようと思います。

　まず、秋月電子の　サンプルプログラムを

お見せします。

　右のプログラムソースで　setup() 内にて、

Serial.begin(38400); は　115200 に　変更しま

す。　ESP32-WROOM-32の標準的な ボーレイ

トは、 115200 に　なっているからです。

#include <Wire.h> // Source (1/5)

// MMA8452のI2Cスレーブアドレスを設定します。
// 基板ジャンパSJ1が未接続(デフォルト)なら0x1D
// はんだで接続したら 0x1Cです。

#define MMA8452_ADRS 0x1D
// MMA8452の内部レジスタアクセスと加速度算出
// に使う定数です。
#define MMA8452_OUT_X_MSB 0x01
#define MMA8452_XYZ_DATA_CFG 0x0E
#define MMA8452_CTRL_REG1 0x2A
#define MMA8452_CTRL_REG1_ACTV_BIT 0x01
#define MMA8452_G_SCALE 2

void setup()
{
 byte tmp;

 // UARTのボーレートは、38400bpsに設定します。
 Serial.begin(38400);
 Wire.begin();

// Source (2/5)

 // MMA8452の内部レジスタを設定します。

 tmp = MMA8452_ReadByte(MMA8452_CTRL_REG1);

 MMA8452_WriteByte(MMA8452_CTRL_REG1, tmp &
 ~(MMA8452_CTRL_REG1_ACTV_BIT));

 MMA8452_WriteByte(MMA8452_XYZ_DATA_CFG,
 (MMA8452_G_SCALE >> 2));

 tmp = MMA8452_ReadByte(MMA8452_CTRL_REG1);

 MMA8452_WriteByte(MMA8452_CTRL_REG1, tmp |
 MMA8452_CTRL_REG1_ACTV_BIT);

}

ここで使用している定数宣言を　表示します。

#define MMA8452_CTRL_REG1 0x2A

#define MMA8452_CTRL_REG1_ACTV_BIT 0x01

　上記、定数は、左のソースの　赤で囲んだ中で使用さ

れてます。　頭の　MMA8452は　省略しますが、

CTRL_REG1 は　MMA8452内の制御レジスタ１です。

　最初、制御レジスタ１を　読み出して byte　tmp に

格納しています。　そして　CTRL_REG1_ACTV_BIT　

（ 01h ）の　ビット反転を行い　tmp と　ANDを　取り

制御レジスタ１ に　書き込んでいます。　要は、制御レ

ジスタ１の 最下位 bit だけを　0 にしているという事で

す。　同様に　左下の　赤枠内は、制御レジスタ１の 最

下位 bit だけを　1 にしているという事です。

　2つの　赤枠の間の行は

#define MMA8452_XYZ_DATA_CFG 0x0E

#define MMA8452_G_SCALE　2　で　XYZ_DATA_CFG

レジスタに　(2 >> 2) で　0 を　書き込んでいる事に　

なります。

void loop() // Source (3/5)
{
 byte buf[6];
 float g[3];

 // MMA8452の内部レジスタにある測定値を読み込みます。
 // X: g[0], Y: g[1], Z: g[2] に対応します。

 MMA8452_ReadByteArray(MMA8452_OUT_X_MSB, 6, buf);

 g[0] = -(float((int((buf[0] << 8) | buf[1]) >> 4))/
 ((1 << 11) / MMA8452_G_SCALE));

 g[1] = -(float((int((buf[2] << 8) | buf[3]) >> 4))/
 ((1 << 11) / MMA8452_G_SCALE));

 g[2] = -(float((int((buf[4] << 8) | buf[5]) >> 4))/
 ((1 << 11) / MMA8452_G_SCALE));

　ループ先頭で宣言されている、 byte buf[6]; は

MMA8452内の データレジスタを読み出すバッファ

です。　float g[3]; は　X,Y,Zの 各軸加速度データ

に　変換した値を入れる変数です。 変数名の g は

多分 CGS単位系の　加速度の単位 gal から　g と

されたのでしょう。　 因みに　３軸加速度センサ基

板を　水平に設置された場合、Z軸が上下軸に　な

ります。　その状態で加速度センサの値を読み出

すと、Z軸にだけ　-1が 定常的に出力されます。

これは、引力加速度 1G です。 Z軸の 下方向に

引っ張られるため、-1G と　なります。

　MMA8452_ReadByteArray()は　配列データを

byte単位で連続して転送する I2C関数です。

第一引数が　送り元の MMA8452Q内の レジスタ

値です。　第二引数が　転送 byte数です。　第三

引数が、送り先の buf 変数の先頭アドレスです。

　これにより、X,Y,Z 各軸のデータが　2byteで　計

6byte　buf 配列に 転送されます。　その下の

データ変換計算は　次のページで 説明します。

MMA8452Qからのデータ取り込み

X軸データ変換

Y軸データ変換

Z軸データ変換

 g[0] = -(float((int((buf[0] << 8) | buf[1]) >> 4))/
 ((1 << 11) / MMA8452_G_SCALE));

　データ変換の式は　X、Y、Z ありますが、入力の配

列と　出力の配列の添え字が異なるだけで、同じ計

算を行っています。　このややこしい見た目の式は

bitの並べ替えと、スケール変換、極性反転の ３ つ

の事をやっています。

①　bitの並べ替え：　X,Y,Z の 各要素データは 16bit

　　で読み出していますが、 有効なデータは 12bit で

　　す。 そして 有効なデータ 12bitの 最上位 bit の

　　MSBは、16 bitの最上位bit MSBと　重なって

　　います。　で、パソコンや、マイコンで　データを

　　扱う時は、12ｂｉｔ 最下位 bitの LSBと、16bit 変数

　　のLSBを　重ねます。　センサーデバイスの場合

　　最上位の MSBから　有効データを 詰めて bit を

　　並べてある場合が多いです。　これは、逐次比較

　　型の A/Dコンバータの変換シーケンスを考えると

　　その方が自然なんです。　どういう事かと　言うと

　逐次比較型A/Dコンバータは、電圧を２分探索的に

1/2、1/4、1/8、1/16と 比較判定していくので、大き

い重みを持ったデータから、順に値が決まって行きま

す。　その関係で　最上位から並べる方が都合がい

い。という事です。　この並びは　デジタルオーディオ

用のデバイスも　同じ並びになってます。 その MSB

を 重ねた並びを　LSBを　重ねた並びにしないと

パソコン、マイコンでは　扱いにくいという事です。

b11b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

b11b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

　上の図を見ると　単純に 4bit 右シフトすれば良さそ

うな気がしますが、そう単純に行かない理由がもう一

つあるのです。　この手のセンサーデバイスは、ワー

ドデータ内の　バイト並びが　ビッグエンディアンなの

です。　ESP32は　リトルエンディアンです。　その関

係で、 buf[0]を　左シフト 8　を やってあるのです。

　前ページの　bit並び図を、エンディアンの変換で　

上下バイトを 入れ替える処理も含めた形で描くと、

下の図のようになります。

b11b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

b11b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

b11b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

High byte Low byteセンサ内

マイコンに転送

b11b10 b9 b8 b7 b6 b5 b4

buf[0]

b3 b2 b1 b0

buf[1]

buf[0] << 8
を行う

buf[0] buf[1]

 g[0] = -(float((int((buf[0] << 8) | buf[1]) >> 4))/
 ((1 << 11) / MMA8452_G_SCALE));

　最終的に　左下の 16bit整数型の変数の 下位 12bit

が　有効なデータです。　で、12bit の MSB　b11は、サ

インbitです。　int（）で　囲った中で　4bit 右シフトしてい

るのは、最上位のサインビットを　保持しながらシフトす

るためです。　このあたりのビット操作は　アセンブラと

２の補数が、分かる方であればイメージがつかみやす

いと思いますけど、高級言語から入ってきた方には、難

しいかもしれませんね。　で、続きの (1 << 11) ですが

2　 = 2048 の 事です。　MM8452_G_SCALE = 2 なので

　上の式の　２行目は　1024 になります。　

MM8452_G_SCALE = 2 は　レンジ設定で、±2Gの レン

ジです。　それが　２の歩数の量子化数で　-2048 ～

2047 に　なります。　この値を floatに変換して2行目の

式の 1024 で割ると　約　-2 ～ +2 G の加速度を　表

す事になります。　右辺の 最初に - が　あるのは、

絶対値は　そのままに　極性だけ反転させているという

事です。　2行の式の説明が　長くなりましたね。

11

// Source (4/5)
void MMA8452_ReadByteArray(byte adrs,
 int datlen, byte *dest)
{
 Wire.beginTransmission(MMA8452_ADRS);
 Wire.write(adrs);
 Wire.endTransmission(false);
 Wire.requestFrom(MMA8452_ADRS, datlen);
 while(Wire.available() < datlen);
 for(int x = 0; x < datlen ; x++)
 dest[x] = Wire.read();
}

byte MMA8452_ReadByte(byte adrs)
{
 Wire.beginTransmission(MMA8452_ADRS);
 Wire.write(adrs);
 Wire.endTransmission(false);
 Wire.requestFrom(MMA8452_ADRS, 1);
 while(!Wire.available());

 return(Wire.read());
}

// Source (5/5)
void MMA8452_WriteByte(byte adrs, byte dat)
{
 Wire.beginTransmission(MMA8452_ADRS);
 Wire.write(adrs);
 Wire.write(dat);
 Wire.endTransmission();
}

I2C　連続した１ブロックデータの読み出し

void MMA8452_ReadByteArray(byte adrs,

 int datlen, byte *dest);

i2c 1byte 読み込み

byte MMA8452_ReadByte(byte adrs);

I2C　1byte 書き出し

void MMA8452_WriteByte(byte adrs,

 byte dat);

上記 ３つの関数は、Wireライブラリ関数を I2C

の伝送シーケンスとして 一まとめにした関数で

す。

