
気温、湿度、気圧センサの　データ取り込み

　前回は 加速度センサでしたが、今回は 気温

、湿度、気圧センサの　データ取り込みを 行い

ます。　マイコン環境は　前回と同じく ESP32-

WROOM-32 と　Arduino IDE で　行います。

　今回の　気温、湿度、気圧センサ BME280は

ドイツの　ボッシュというメーカー製品です。

ボッシュのデータシート参照値

電源電圧：　1.71 ～ 3.6V

温度測定範囲：　-40 ～ +85℃

湿度測定範囲：　0 ～ 100％

気圧測定範囲：　300 ～ 1100 hPa

温度誤差： 0 ～ 65℃ 範囲内で　±1℃

湿度誤差： 25℃　20 ～ 80% 範囲内で　±3％

気圧誤差： 0～65℃内にて 300 ～ 1100hPa　

　　　　　　　 範囲内で　±1.0 hPa

　左下の　数値だけ見れば 気温、湿度、気圧の

測定が出来て、精度も良いと思います。

　で、BME280の ICは　I2Cと SPIのどちらにも対

応しているようです。　但し　基板が I2C 専用に

なっている物が　多いです。 まあ、気温、湿度、

気圧の測定であれば　あまり高速性は必要ない

ので　I2Cで　十分と思います。

　それと注意点は　電源電圧が　1.71 ～ 3.6Vな

ので 3.3Vのマイコンと接続する事になります。　

という事で ESP32は　OKです。　BME280の基板

は　4年ほど前に購入した記憶があるので　探し

たら出てきました。 それも、基板形状が異なる　

2種類の基板が、出てきました。　で、見比べると

周辺回路の構成が 異なるようです。 購入した　

amazonにて 商品サイトを調べて　２種類の基板

の回路図が　見つかりました。　

　それらを、次のページにて お見せします。　

２種類の BME280基板

　仮に、左の基板を　A基板、右の基板を　B基

板とします。　どうやらA基板は　6pinで SPIでも

使えそうです。　Bの基板は 4pinで　I2C専用で

す。 それとA基板は pinが見える裏側には 部

品は、付いていませんが、B基板には　２つ IC

らしき物が付いてます。　赤枠で囲ってます。

左の赤枠は　三端子レギュレータのようです。

右の赤枠は　信号線SCL、SDAのレベル変換 IC

のようです。　下の回路図が　A基板です。

　A基板には 三端子レギュレータは 無いです。

　右の回路図は　B基板です。

右上の U4が　Vin入力の電圧を

3.3Vに　して出力する三端子レ

ギュレータです。　BME280に 接

続されます。

　右下　BME280の 左下側 5pin

SDOの　S1の スイッチが接続さ

れてますが、実際の基板には あ

りません。 SDOを　直接グランド

に接続してあります。

　B基板 J1　1pin の　Vin は 5V

を接続する事になります。　基板

内に BME280専用の 3.3Vのレギ

ュレータが　ある事になります。

　ノイズの面では、この回路の方

が　有利と思います。

ESP32と　２種類の BME280基板の 接続

ESP32

I2C_SCL

I2C_SDA

GPIO22

GPIO21

GND

3.3V

ESP32

I2C_SCL

I2C_SDA

GPIO22

GPIO21

GND

5V

BME280 ・ A基板

SCL

SDA

GND

VCC

BME280 ・ B基板

SCL

SDA

GND

VIN

　センサ基板側／1pin 電源の接続を　5Vか、

3.3Vかを 注意すれば、後の接続は同じです。

　A基板の CSBと　SDOは、SPI接続時の

信号線です。　今回は使用しません。

CSB

SDO

BME280基板の　データ読み出しに関して

　BME280のデータ読み出しの　プログラムに

関しては、Arduino環境では　BME280の アクセ

スを行うライブラリが 既にあり、そのライブラリ

を使用すると、あっさり BME280を　使用する事

が、簡単に出来ます。

　しかし、それってプログラムの勉強になるの

かな。 ？ と　私は、疑問に思います。 かと

いって　これらを ゼロから作るのは、BME280と

の通信手順や 読み出したバイナリ値を　難解

な補正計算を行い、温度、湿度、気圧の値に

変換するのは至難の業です。 　よって、中間を

とって　I2Cの通信機能をサポートする Wire ラ

イブラリを使った、BME280アクセスの スケッチ

を　使った方が　BME280の　I2C通信の　手順

や、取り出したデータのバイナリ値の整列や

厄介な補正計算も　コードが 見れます。

　C言語の　ソースコードが見れると 何を　やって

いるのか、という事の理解を深める事も出来ます

し、部分的に　改修する事も出来ます。　あと

別のマイコンに移植する場合も、このような　ソー

スがあると　事がスムーズに進みます。

　今回は、通信の Wireライブラリの関数を束ねて

一つのまとまったアクセス関数の形に　作り直し

ました。　そのようなサブ関数をいくつか作成しま

した。　それと、前回の加速度センサのデータ読

み込み直後も そうでしたが、やたら ややこしい　

シフト演算を行っている箇所も　サブ関数にしま

した。　要は　ビッグエンディアンと　リトルエンデ

ィアンの　バイト単位のデータの並べ直しです。

　しかし今回は、補正計算が　かなり難解で 挫

折しました。

　これは、BOSCHの BME280の設計に 関わっ

た技術者が　補正計算のソースを公開したの

ではと　思いました。

　で、BOSCHで公開している BME280に 関わ

る Final data sheet を　見つけました。 2015年

 5月7日 リリースのようです。　このデータシー

トの 49-50ページに　C言語の サンプルソース

を 載せてありました。　開発環境は、何か分か

りませんが、32bitの環境のようです。　2種類

のソースを　載せてあり、49ページ側が　浮動

小数点 doubleで 演算処理してあり、50ページ

側が、整数 int32の　整数演算で 処理してあり

ます。

　Arduino UNO等で動くソースは、50ページの　

int32の 演算処理関数と　ほぼ同じです。

　何が違うかというと、32bit整数の 型宣言に　

BOSCHのソースでは　(BME280_S32_T)

であり、Arduinoの ソースは　(int32_t) に、なって

います。　計算の内容は　全く同じ様です。

　という事で、今回のBME280の補正計算処理は

触らない事にします。

　で、自分の分かる範囲で　改造したソースで、

ビルド　書き込みして　一応動く事を確認しまし

た。　あと、BME280のセンサー基板が　A基板と

　B基板が　ありましたが、どちらも同じプログラ

ムで　動く事を　確認しました。

　という事で　動画で お見せします。

