
前回のプログラムの説明に関して

 　どこから説明を　始めればいいのか最初は

悩みますね。　普通は、組み込みシステム的な

ものであれば、何を行うものであるかの　概要

的なところから　説明が始まると 思います。

　でも　ここしばらくはバラバラに　加速度セン

サ、気温 湿度 気圧センサ、SDカードアクセス

のパート毎の説明をしてきたので、その延長で

説明します。　それと今回は　複合的に　シリア

ル通信による、データ転送と、ファイルアクセス

を組み合わせました。

　PC側のプログラムの説明は 2つ前の動画に

パソコン側のプログラム構成として　中央にパ

ラメータ構造体を置き、右に表示 編集、下にパ

ラメータ Writeと　Read、 左に　パラメータの送

信、受信機能という事で　プログラムの構成要

素を概要的に示しました。

simple_logger.ino

メイン処理

soft_clk.cpp

時計 計時処理
(現在 未使用)

soft_clk.h

def_param.cpp

パラメータ宣言と
ファイル入出力処理

def_param.h

comm_s.cpp

ESP32マイコンと
PC間の通信処理

comm_s.h

パラメータ宣言と ファイル入出力処理

def_param.cpp

パラメータ宣言と
ファイル入出力処理

def_param.h

int sd_init(void); SDカード 初期化処理

void sd_remove(char *fname); ファイル消去

int pm_write(void); パラメータファイル書き込み

int pm_read(void); パラメータファイル読み出し

void pm_chk_read(void); PMファイル有無確認して読出し or 初期化

void pm_init(void); PM構造体 初期化

Arduino.h

SPI.h

SD.h

システム側の
インクルードファイル

　def_param.cpp内に実装している関数です。

パラメータ構造体の型宣言は　def_param.h内に

あります。　構造体変数の実態宣言は　simple_

logger.ino 内に あります。　パラメータファイルの

ファイル名の宣言は　def_param.h内 先頭に

#define PM_FNAME "/LogParam.pm" の形で

宣言しています。

　ファイル名先頭の "/"は　取ると　エラーになります。　このような、組み込みシステムでは、

ファイルは　ルートディレクトリに　置く事にします。

　電源ON及び、Reset直後のパラメータに関わ

る処理シーケンスは　以下のようになります。

　以下の処理は　def_param.cpp内の

void def_pm::pm_chk_read(void); です。

右が　関数ソースです。

電源ON、Reset直後の
SDカードの処理

SDカード内に
PMファイルは有るか

PMファイル読み込み

PM構造体初期化

Return

No

Yes

//********************************
//** PMファイル有無確認を行い **
//** あれば 読み出し **
//** 無ければ PM構造体初期化 **
//********************************
void def_pm::pm_chk_read(void)
{
 if(SD.exists(PM_FNAME))
 pm_read(); // 読み込み
 else
 pm_init(); // 仮初期化
}

　上記ソースの　SD.exists(ファイル名) 関数

は、ファイルが　存在するか確認する関数で

す。 あれば、Ｔｒｕｅ、無ければ False です。

パラメータ構造体の SDカード読み書き

//** パラメータファイル読み出し **
int def_pm::pm_read(void)
{
 File f;
 int sts;

 f = SD.open(PM_FNAME, FILE_READ);
 if(f)
 {
 sts = f.read((uint8_t*)&Hpm, sizeof(Hpm));
 f.close();
 if(sts != sizeof(Hpm)) return -2;
 } // サイズ不一致で 読み出し失敗
 else
 return -1; // オープン失敗

 return sts; // 正常終了（ 読み出しバイト数 ）
}

　pm_read() 関数内にて　ファイルをアクセ

スするための SDオブジェクトの関数を　説

明します。　今回は、バイナリデータのブ

ロックを　読み出す事を目的としたコーディ

ングです。　ソース先頭で　File f; が　あり

ます。　これは　指定されたファイル名、ファ

イルアクセスモードで　SD.open関数でオー

プンされた　ファイルをアクセスするための

オブジェクトが f　と なります。

sts = f.read((uint8_t*)&Hpm,

sizeof(Hpm));　は、パラメータファイル

の 読み出しです。 第一引数は、パラメータ

構造体のアドレスです。　キャストは　この

通りにやって下さい。　第二引数は　構造

体データの　サイズ（ byte 値 ）です。

読み終わったら、速やかに f.close(); を

行って下さい。

//** パラメータファイル書き込み **
int def_pm::pm_write(void)
{
 File f;
 int sts;

 f = SD.open(PM_FNAME, FILE_WRITE);
 if(f)
 {
 sts = f.write((uint8_t*)&Hpm, sizeof(Hpm));
 f.close();
 if(sts != sizeof(Hpm)) return　-2;
 }　　　　　　　　 // サイズ不一致で 書き込み失敗
 else
 return -1; // オープン失敗

 return sts; // 正常終了(書き込み byte数)
}

　pm_write() 関数内にて　ファイルをアクセ

スするための SDオブジェクトの関数を　説

明します。　今回は、バイナリデータのブ

ロックを　書き込む事を目的としたコーディ

ングです。　File f; の説明は前ページで　

行ったので省略します。　SD.open 関数の

第二引数の FILE_WRITE が　書込みモード

指定です。　読み出しの時は FILE_READで

す。　sts = f.write((uint8_t*)&Hpm,

sizeof(Hpm));　は、パラメータファイル

の 書き込みです。 第一引数は、パラメータ

構造体のアドレスです。　キャストは　この

通りにやって下さい。　第二引数は　構造

体データの　サイズ（ byte 値 ）です。

書き終わったら、速やかに f.close(); を

行って下さい。　ファイルアクセスは　よく使

うと思われるので、細かく説明しました。

ESP32マイコンと　PC間の 通信処理

comm_s.cpp

ESP32マイコンと
PC間の通信処理

comm_s.h

void start(int bps); シリアル通信 使用開始

send_txt(char *txt); 文字列の送信

send1(byte b); 1文字 送信

recv_text_block(byte *buf, byte len); パラメータファイル読み出し

void erase_recv_char(void); 受信済み文字の消去

check_recv_char(void); 受信文字 確認

Arduino.h システム側の
インクルードファイル

　comm_s.cpp は　def_param.cppに 比べ関数が

２倍以上あります。　次のページに続きます。

で、関数が多数あると 何所から見たらいいのか

可読性の悪いところが あります。

void send_txtln(char *txt); 文字列+CrLfの送信

int hexstr_to_bin(char *hex, byte *bin); Hex -> Bin 変換

byte hexchar_to_byte(char c); Hex 1文字を 4bitバイナリ値に変換

byte byte_H4_hex1(byte b); byte上位4bitを Hex1文字で出力

　しかし、基本となる処理は、パ

ラメータデータの受信と 送信の

２つです。　

byte byte_L4_hex1(byte b); byte下位4bitを Hex1文字で出力

int bin_to_hexstr(byte *bin, int blen, char *hex); バイナリ配列を Hex文字列に変換

byte gen_hp_code(byte *bin, int len); 水平パリティコード生成

byte chk_hp_code(byte *bin, int len); 水平パリティコード照合

byte recv_h_cmd_1(void); Hexコマンド １行受信

byte param_bultin(word adr, byte len, byte *buf); パラメータ組立て

void recv_h_cmd_main(void); Param Hex受信コマンド メイン

byte send_h_cmd_1(word adr, byte len); Hexコマンド １行送信

send_h_cmd_main(void); Param Hex送信コマンド メイン

param_extract_block(byte *buf, word adr, byte len); Bpmから１ブロック取り出し

　次に　パラメータ受信と、送信の２つの処理のフローをお見せします。

パラメータデータの送受信処理

　まず、事前に理解しておいてほしいのは、転

送するパラメータ構造体を　先頭から　16byte

毎にスライスして　送受信します。　その際に

パラメータ構造体に　バイナリデータが含まれ

ているため、文字列として転送時 バイナリデー

タの値が　Crコードと紛らわしい値が出てくる

事もあります。　よって　やや面倒ですが　

16byteのバイナリデータを　16進数の Hex文字

列データとして送ります。　その前に　16byteの

バイナリデータの前に　データ長 1byte と　構

造体先頭を　0 とする。　byte単位のアドレス

２byteを　付けます。　これで　1+2+16 で　19と

なります。この19byteに対し 受信後 電文が

壊れてないか検証するために　水平パリティ

コード 1byteを　19byteの電文の終りに　付け

ます。　

　よってバイナリデータは　計 20byte と　なりま

す。　この 20byteを　Hex文字列 40文字に変換

します。　そして、電文の識別を　受信側でやり

やすくするため、電文先頭に ":H" または ":h"を

付ける事にしました。　そして、文字列として送る

ので　電文の終りに CrLf コードを付けて送信し

ます。　電文の例を示します。

:H10000067452301CDAB34125469746C6520737437

①　青の 10 が 16文字を意味します。

②　赤の 0000 が 構造体先頭からのアドレス値

③　緑の 67 ～ 74 が 16byteにスライスしたバイ

　　ナリデータを 32byteの Hex文字列に変換した

　　ものです。

④　最後の 茶色 37 は 水平パリティコードです。

　　これにより 電文が壊れてないか判断します。

　今回は、エラー時　再送信制御は 行っていま

せん。　Error表示をして その場で止まります。

パラメータデータの 送信時フロー

PM 送信メイン

1行 送信処理

　ptr = &Hpm;
　len = 16;
　adr = 0;

　adr += 16;

全データ
送信済？

終了コマンド送信

Return

No

Yes

1行 送信処理

16byte PMスライス

Binバッファ先頭に
Lenと Adr を　格納

水平パリティ生成

Binバッファ終端に
水平パリティ格納

文字列バッファ先頭
に　"：ｈ" を 格納

Binay -> Hex 変換

1行 シリアル送信

1文字 シリアル受信

返事は
ACK？

Return 1

Yes Return 0

No

パラメータデータの 受信時フロー

PM 受信メイン

1行 受信処理

Return

sts=0
Error

sts=2
終了

Yes

No

No

Yes

　受信処理では　ｐｔｒ、ｌen、adr は いらないの。？

と 思われる方もおられるでしょう、 lenと adrの 値は

相手から送って来る電文の中に　含まれています。

ptr値は　adrから　生成出来ます。

1行 受信処理

1行 シリアル受信

先頭は
":H"か？

Return 0

No

Yes

Hex -> Binary 変換

水平パリティ生成

Error

パリティ
OK

NAK シリアル送信

Return 0

Yes

No

構造体 再構築

ACK シリアル送信

Return 1

正常終了

　len = bin_buf[0];
　adr = (bin_buf[1] << 8)
 + bin_buf[2];

comm_s プログラム　関数の階層表

send_h_cmd_main send_h_cmd_1

param_extract_block

gen_hp_code

bin_to_hexstr byte_h4_hex1

byte_L4_hex1

send_textln

check_recv_char

send_text送信側 親関数

recv_h_cmd_main

受信側 親関数

recv_h_cmd_1

param_bultin

send_1

recv_text_block

hexstr_to_bin hexchar_to_byte

chk_hp_code

