
3軸加速度センサーの組み込み

 　前々回、作ったパラメータ通信機能と、パラ

メータの書出し、読込みプログラムに、３軸加

速度センサーMMA8452Qの ソースを組み込み

ます。　ただ、ソースを 移すだけなら、すぐでき

ますが、パラメータに設定しているサンプルレ

イトで、加速度データを　取り込み出来るように

します。

　それと、パソコン側からコマンドで　トリガON

状態に設定して　パラメータに設定している収

録秒数の間、SDカードに 加速度データを デー

タファイルとして書き出す事を 目標とします。

　SDカードに書き込む事が 出来れば　手動の

ロガーとして、動作の確認は　出来ます。

　データを　SDカードに収録後、SDカードを　パ

ソコンに 持って行き データを確認するための　

グラフ表示の　ビューアソフトを　作る必要が

　あります。（ 作る事は出来ますが、これが

ちょっと面倒 ） 　で、パソコン側のビューアまで

含めて １週間以内に作るのは、ちょっと厳しい

と思いますので、PC側ビューアは　間に合わな

かったら、ごめんなさい。　という事で　作業を

進めます。

　あとデータのフォーマットを　どうするのか

検討する必要があります。　収録データを　小

さく出来るのは、センサから入ってくる生データ

を使う方が　データファイルを 小さく出来ます。

　MMA8452Qの場合、12bitのバイナリデータが

　Ｘ Ｙ Ｚ の　３チャネル分と　なります。　データ

型としては　2byte 整数×3で 記録する事にな

ります。　

　単位変換の演算を行うと　単精度 浮動小数

点データ　4byte×3 と なります。



　加速度センサーのようなデータの場合、トリガ

判定機能で　イベントが　発生した際、記録す

る事になりますが、以前お話しましたが、プリト

リガ機能といって、イベントが発生する、5秒か

10秒前のデータから　収録したいという機能を

要求されるので、最大 10秒の遅延を作る　

データ用のリングバッファを用意する必要が

あります。　最大 100Hzサンプリングで、4チャ

ネル、10秒の遅延を作るのは 100×4×2×10

で、8kbyte以上の　リングバッファが　必要で

す。（ 2byte整数の場合 ）、単精度浮動小数点

であれば、リングバッファが　倍のサイズに な

ります。　ESP32であれば　倍のサイズでも、

RAMメモリに入るとは思いますが、今回は、

2byte整数のリングバッファを構築します。

　トリガの判定も　整数を想定しているので

この方が　いいと思います。

　単位変換の処理は、パソコンで　後処理的にも

出来ますが、ESP32マイコンの演算処理能力が

早いので、マイコン側で　ファイルに書き出す直

前で、単位変換の演算を行い　4byte浮動小数

点データとして　SDカードに　書き出す事に

します。　今の SDカードは　SDHC で 最大　32

Gbyteで 容量が 大きいので　全く問題ないと思

います。

　後は、パラメータ構造体に、若干 追加項目を

用意する必要があります。　パラメータ構造体

は、事前に予備エリアを　多数用意しているので

　構造体の宣言に　多少追加が生じますが

サイズは　変りません。

以上の事柄を　次のページに整理してみます。



　　　MMA8452Qから取り込んだ生データ

　３チャネル共通で 12bitなので、１サンプル
　３チャネルの　16bit（2byte整数）として扱う。

　　１サンプルのデータ：
　　　 計 6byte

ch.0 ch.1 ch.2

2byte 2byte 2byte

　　　SDカード書込み時のデータ

　データは　SDカード書き込み直前で　単位変換を
　行い　4byte 浮動小数点データに変換する。
　今回の　3軸加速度データ収録の場合は　殆どの場合
３軸を組みに 扱うと思われるので、３チャネル固定と
考える。

　１サンプルのデータ：
　　計 12byte
　全体のファイルサイズは、100Hzサンプリング 3分 で
　256（ヘッダ）＋ 12×100×180 ＝　216 Kbyte に なり
　ます。　やや大きい感じもしますが、100Hzサンプリン
　グで　収録すれば　こんなもんです。

　　　生データ遅延用リングバッファの データ

　リングバッファは １つのデータを 2byte整数で扱い

　１サンプル／４チャネルで　扱う事にする。　

　１サンプルのデータ：
　　計 8byte　　ch.3は　未使用

　リングバッファサイズは　最大　100Hz　10秒以上
　の容量が必要。
　１０００サンプル以上で （ 8 Kbyte以上 )　という事で
　8192byteとする。

ch.0 ch.1 ch.2

2byte 2byte 2byte

ch.3

2byte

ch.0

4byte

ch.1

4byte

ch.2

4byte

バッファサイズ等の検討結果



　リングバッファとは　バッファが　輪になったイ

メージで、同じメモリ範囲内を　ぐるぐる回って書

込み、読出しを行うバッファです。　これをメモリ

上で構築するには、横にチャネル数　縦にサン

プル数の２次元配列を　イメージして下さい。

　データを書込むポインタ操作で、縦の最終行ま

で行ったら　また先頭に戻る事により、延々ぐる

ぐる回るイメージを作り出します。

　そして、書込みに使う ポインタと　読出しに使う

ポインタの２本を用意します。　あと通常は、リン

グバッファに　書込み後に　ポインタをインクリメ

ントして　書込み個数を　＋１します。　リング

バッファを読出し後に　ポインタを　インクリメント

して、書き込み個数を －１する カウンタも　用意

します。　今回のような遅延バッファの場合、定

常状態になったら　書込みポインタと　読出しポ

インタが　常に同期して　インクリメントします。

　リングバッファの　データ個数が　定常状態に

なったらというのは、遅延データを作るのが　目

的なので、書込みポインタにより、書き込まれた

データの個数が、遅延データを作るための、サン

プル数データが溜まれば、遅延用のリングバッ

ファは　レディ状態になり、遅延データを読出す

事が可能となります。　仮に　100Hzサンプリング

で　5秒の遅延の場合は、リングバッファに　

500サンプルの　データが　溜まれば レディ状態

に　なります。　よってシステムが　最初に起動し

た直後は　リングバッファ内に　データが溜まっ

て無いので　ビジー状態で　5秒間 待たされま

す。　5秒経過後　レディ状態で、トリガの受け付

けが　可能となります。

　ちょっと、イメージが　掴みずらい説明だったと

思われるので、次のページで　図で 示します。



Ch.0 ch.1 Ch.2 Ch.30

Ch.0 ch.1 Ch.2 Ch.31

Ch.0 ch.1 Ch.2 Ch.32

Ch.0 ch.1 Ch.2 Ch.33

Ch.0 ch.1 Ch.2 Ch.34

Ch.0 ch.1 Ch.2 Ch.35

Ch.0 ch.1 Ch.2 Ch.36

Ch.0 ch.1 Ch.2 Ch.37

Ch.0 ch.1 Ch.2 Ch.3499

Ch.0 ch.1 Ch.2 Ch.3500

Ch.0 ch.1 Ch.2 Ch.3501

Ch.0 ch.1 Ch.2 Ch.31023

WR_PTR

RD_PTR

Count

データ遅延用リングバッファのイメージ

WR_PTR は　書込み用ポインタです。

RD_PTR は 読出し用ポインタです。

Count は　サンプルデータ格納個数

です。

　Countが　遅延時間に必要なデータ数

蓄積出来たら　リングバッファは　レディ

状態に　なります。　左の図の場合は

サンプル数　500 で　レディになるイメー

ジを　表しています。

　よって、Count が　500になるまでは

RD_PTRは　読み出し動作を行いませ

ん。



SDカードに記録するデータフォーマット

　SDカードに　書き込むデータフォーマットは

先頭に 256byte の　ヘッダ情報を記録します。

　その直後に　今回のMMA8452Q ３軸加速度

センサーの場合、4byte Float データを　X軸　

Y軸　Z軸の　３チャネルで　計 12byteを １サン

プルとして、時刻順に　記録して行きます。　

　記録サンプル数は、収録時間 3分で　100Hz

サンプルの場合、3×60×100 で　18,000 サンプ

ルに なります。　ヘッダー情報を含め ファイル

サイズは　計　216,256 byte に　なります。

　右に　図で示します。

256byte
ヘッダーファイル

ch.0 ch.1 ch.2

ch.0 ch.1 ch.2

ch.0 ch.1 ch.2

ch.0 ch.1 ch.2

データフォーマット

ch.0 ch.1 ch.2

ch.0 ch.1 ch.2

ch.0 ch.1 ch.2

ch.0 ch.1 ch.2

ch.0 ch.1 ch.2

ch.0 ch.1 ch.2

ch.0 ch.1 ch.2

ch.0 ch.1 ch.2

0

1

2

3

4

5

6

7

17996

17997

17998

17,999

計　216,256 byte



正確な サンプルレイト生成

　正確なサンプルレイト生成のため、タイマー

割り込みを使用する予定で　おります。

　正確なサンプルレイトとは、今回の場合は

３軸加速度センサから、正確な時刻の刻みで

センサのデータを　取り込む事を意味します。

　で、加速度センサーの場合は　100Hzとか

やや速い サンプルレイトで　データを取り込み

続ける必要が　あります。 この 100Hzの　イン

ターバルを　正確に刻み続けるために　タイ

マー割り込みを　使用したいと考えます。

　で、タイマー割込み処理の中では　いくつか

の制限事項があります。　まず、時間のかかる

事は　やってはならないという事です。　100Hz

という事は　インターバルは　10msです。

　タイマー割込み処理の中で　10msかかる　

　処理を　行うと　システムが破綻します。

一般的に言われているのは、最悪でも　タイムイ

ンターバルの　1/2 以内にする事と言われてい

ます。　インターバルが　10msという事は　タイ

マー割り込み処理は 5ms以内に　処理を　完了

しなければならない。 という事です。

　それと、タイマー割り込みに限らず　割り込み

処理の中で　割り込み処理を 含む処理を　呼び

出すと　処理が正常に実行されない。　あるいは

最悪の場合 システムが　破綻する危険もありま

す。　

　シリアル通信は　割り込みの機能を利用してい

ます。　場合によってはうまく行く場合もあるかも

しれませんが、割り込み処理の中では　呼び出さ

ない方が いいです。



　場合によっては　うまく行く場合も あるかもし

れない。　というのは　CPUのハードの話になり

ますが、ESP32にも　CPUコアの 周辺回路とし

て割り込みコントローラが　あると思います。

　割り込みコントローラには、いくつかのモード

があるので　決め付ける訳にはいかないので

すが、一般的に　各割り込み要因毎に　割り込

みの優先レベルを　設定する事が 出来ます。

　で、且つ多重割り込みが　許可されている場

合は、タイマー割り込み処理内にて　タイマー

割り込みの　優先レベルより　高い割り込みレ

ベルを　使用する処理を　読み出した場合は

割り込み処理中に　ネスト的に　更に高いレベ

ルの割り込みを　受け付ける事が　出来ます。

　逆にタイマー割り込み中に　低いレベルの割

り込みが発生した場合は、タイマー割り込みが

　終了するまで、待たされる事に なります。

で、タイマー割り込み中に　タイマー割り込みより

レベルの低い割り込みを使用する処理を　読み

出して、その中で レベルの低い割り込み応答が

ある事を 待つ処理が　入っていると　タイマー割

り込み内にて　無限ループとなり　システムが、

破綻します。　CPU周辺ハードを　イメージ出来

ないと　分かりにくい話でしたが、割り込み処理

内では、割り込みを 使用する可能性がある関数

を　実行する場合、十分注意して下さい。

　何故、ここで　割り込みの 多重の話をしたかと

いうと、 I2Cの Wireライブラリが　ちょっと気に

なっているのです。 割り込みを 使用して無けれ

ば　問題ないです。　使用しているならば、優先

レベルが　高くて多重割り込みを許可されている

環境である事を　祈るばかりです。　

実際に　試して確認します。



SDカードのデータ書込みに要する時間

　先ほどの実験動画で保留にしましたが、タイ

マー割り込みを使用する　もう一つの理由が、

SDカードの データ書込みに要する時間です。

　SDカードのデータを　読み出す時は　早いの

ですが、書き込みは　やはりフラッシュメモリな

ので多少時間が　かかると思います。 で、 SD

カードは　１セクタ　512 byteなので　データが　

512 byte以上　メモリ上のバッファに溜まった

時に、１セクタ　データを　SDカード上に　書き

込む事になります。　で、この １セクタの書き込

みに 10ms かかると　また、処理が間に合わな

いという事に　なります。　よって、SDカードの

書き込み処理が　多少遅れても　センサーから

のデータ取り込みは、遅れなく一定のサンプル

レイトで　データを　取り込みたいのです。

　それを 実現するために　タイマー割り込みと

遅延用のリングバッファを　使用するという事で

す。　タイマー割り込みで　センサーからのデー

タ取り込みは、確実に定周期で　行われます。

　SDカードに　データ書込み時、一時的に発生す

る若干の遅れは、リングバッファに データを　貯

め込む事で　対応します。

　で、リングバッファの書き込み処理は　タイマー

割り込み内に　入れますが、リングバッファの読

み出し処理は、メインの バックグランドループで

読み出します。　で、　リングバッファの書き込み

処理と　読み出し処理が、非同期で動く事になる

ので、排他制御も必要となります。

　何か　いろいろ考えてると　だんだん アプリが

ややこしくなってくる感じですね。



状態遷移図に　ついて

　簡易データロガーを作るのに　必要な部品が

揃ってきたので、全体の動きを制御するために

状態遷移図を作成します。　初心者の方は、

また聞きなれない言葉が出て来たと　思います

が、さほど難しい話では無いです。

　言葉の通りなのですが、その時の状態が、

何らかの入力が発生する事により、状態が移

り変わる事を 意味します。　まず、どのような

状態が存在するのかを検討します。

①　待機モード：

　　電源オン直後の状態です。　最低限の条件

　　が揃っていたら　待機状態になります。

　　最低限の条件とは、SDカードが スロットに

　　挿入されているか、センサーが適切に接続

　　されているかです。

待機状態では、PCからのコマンドは　受け付け

ますが、自動でトリガ判定し　データを収録する

事は　出来ません。

②　運転モード：

運転モードは、PCからのコマンドによって移行し

ます。　一旦　運転モードになると、PCのコマンド

は、「停止」ボタン以外は　受け付けません。

　代わりに　自動でトリガ判定しデータ収録する

事が　可能となります。

③　データ記録中モード：

　これは、トリガ判定で　ON状態になると、

センサからのデータを取り込み、リングバッファ

経由で　SDカードに　データを書き込みます。

　所定のサンプル数書き込むと終了で、元の

モードに　移行します。　記録中の　場合は

「停止」ボタンも　受け付けない事にします。



簡易ロガーの 状態遷移図

① 待機モード
センサ読取り

② 運転モード
センサ読取り

③ 記録中モード
センサ読取り

SDカード書込み

運転コマンド
受信

停止コマンド
受信

自動　　　
　　トリガON

自動記録
　完了

手動トリガON
コマンド
受信　　 手動記録

　完了　

　簡易ロガーの　状態遷移図は、大雑把に

このように なります。

　待機モードでのセンサ読み取りは

検討中です。


