
今回の　AVRライター hidspx に　ついて

　画像の物です。 Uさんが、いくつか 作ってい
て、そのうちの 一つを　私の所に 送ってくれま
した。　ホスト側インタフェースは　USBで、 ター
ゲットマイコン側は　６本の信号線を　接続する
事になります。　ライター上のマイコンは、
ATtiny2313-20PUです。 水晶は 12Mhzです。
USB通信の関係でしょう。

　ターゲットインタフェースの末端は、ブレッド
ボードでの使用を　想定して作られたようです。
で、どの色のリード線が　どの信号線に対応する
のか、把握しておく必要が　あります。

茶色

橙

赤

黄色

青

緑

Gnd

MOSI

RST

MISO

Vcc

SCK

　接続に関しては、電源 Vcc
と、Gndは　絶対 間違えない
ように　ターゲットマイコンに
配線します。　その他の信号
線は、一時的に間違えても
すぐに壊れる事は、無いと思
います。

　では、今回の目標である、AT90S2313に
どのように接続するかを、次のページで
回路図で　示します。

　ついでに、実行時に必要となる動作確認用
の LED＋電流制限抵抗と　10MHzのセラロッ
クも　接続する回路図とします。
LEDの点灯論理は　正論理とします。

AT90S2313と hidspxの　配線図

A
T
9
0
S
2
3
1
3
-
1
0
P

C

20

19

18

17

16

1

2

3

4

5

6

7

8

9

10

15

14

13

12

11

RESET

(RXD)PD0

(TXD)PD1

XTAL1

XTAL2

(INT0)PD2

(INT1)PD3

(T0)PD4

(T1)PD5

GND

VCC

PB7(SCK)

PB6(MISO)

PB5(MOSI)

PB4

PB3(OC1)

PB2

PB1(AN1)

PB0(AN0)

PD6(ICP)

茶色

橙

赤

黄色

青

緑

Gnd

MOSI

RST

MISO

Vcc

SCK

Hidspx

10MHz
セラロック

1KΩ

1KΩ

Red

Yellow

AT90S2313と hidspxの　配線完了

PortB.3に接続

PortB.0に接続
セラロック

10MHz

hidspx使って AT90S2313へ　書き込み

　皆様　大変お待たせしました。
やっと　AT90S2313へ　プログラムの書き込み
を行います。　
　プログラムは、前回　Miraさんの サイトの
コメント欄から　コピペした LEDblink.BASを
BACOM-AVRで　ビルドして作成した　
LEDblink.hex を　書き込みます。

　で、ちょっと面倒ですが、BASCOM-AVRは
Windows上で動作する開発環境です。
AVR書き込み器 hidspx は　Linux（ Lubuntu ）
の　ターミナル窓で 実行します。

　$ hidspx LEDblink.hex
　を　行います。

　右に　hexファイルを 指定するだけで、すぐに
　書き込めるので、扱いやすいです。

　hidspx は　hexファイルの書き込みだけでなく
-r の　オプションを付ければ、ATマイコンの　型
式名、そしてプログラム用、データ用のフラッシュ
ROMの 容量も表示してくれます。　-e で　フラッ
シュROMの 消去だけも　してくれます。　

では、
動画で 書き込みの実験を 見てみましょう。

'--
'LEDblink_3.BAS
'--
$Regfile="2313def.dat"
$Crystal=10000000
$hwstack=32
$swstack=8
$framesize=24
'--
Config Portb = Output
Dim i as Integer
i=0
Do
 Portb.3 = 1 ' LED on
 i = i + 1
 Waitms 500 ' 500 ms
 Portb.3 = 0 ' LED off
 Waitms 500 ' 500 ms
 If i >= 10 Then
 PORTB.0 = 1 ' LED2 on
 i = 0
 Waitms 200 ' 200 ms
 PORTB.0 = 0 ' LED2 off
 End If
Loop

 　LEDblink_3.BAS

 余分な、コーディングを消したり
　Waitms の 引数というか
　値を 変更しました。

　　これで、正常なコーディングに
　 なったと 思います。

次は gccを使って プログラムをビルド

　次は　gcc-avrを　使って AVRマイコンに書き
込む　hexファイルを　生成します。
まずは、gcc-avrを メイク、インストールします。
Linuxの ターミナルウィンドウで、以下の　コマ
ンドを　実行します。

　$ sudo apt install gcc-avr binutils-avr avr-libc make
　を　行います。

　　正常終了すれば、AVRマイコン用の　gccコンパイラが
　インストールされてます。

　次は　テストプログラムを　生成します。
さしあたり、右の　サンプルソースを
BASCOMのプログラムと　同じクロック周波数
同じ　LED接続の　I/Oポートに　変更して
使用します。

#define F_CPU 10000000UL
#include <avr/io.h>
#include <util/delay.h>

int main(void)
{
 int i;

 DDRB = 0x09; // Set Dir
 while(1)
 {
 PORTB = 0x08;
 _delay_ms(300);
 PORTB = 0x00;
 _delay_ms(100);

 PORTB = 0x01;
 _delay_ms(100);
 PORTB = 0x00;
 _delay_ms(100);
 PORTB = 0x01;
 _delay_ms(100);
 PORTB = 0x00;
 _delay_ms(100);
 }
}

　次は　ビルドの方法です。

　コマンドが　３行あって、面倒に思えますが、最初の１回目　ビルドの
コマンドをターミナルに打ち込むと　コマンド履歴を憶えていて
くれますので、2回目以降は　[↑]キーを　押す事で　コマンドの履歴を
出せます。　よって、２回目以降は　楽です。　

 以下の ３行で ビルドを　行います。　　は 英大文字 O です。

 $ avr-gcc -g -O2 -mmcu=at90s2313 -c -o main_2.o main_2.c
 $ avr-gcc -g -O2 -mmcu=at90s2313 -o main_2.elf main_2.o
 $ avr-objcopy -j .text -j .data -O ihex main_2.elf main_2.hex

　を　行います。　これを見ると　
　main_2.c -> main_2.o -> main_2.elf -> main_2.hex　と順に 変換される
　ようです。 　正常に　ビルド出来たら

　$ hidspx main_2.hex　　で、書き込みを　行って下さい。

