
今回の　AVRライター hidspx に　ついて

　画像の物です。 Uさんが、いくつか 作ってい
て、そのうちの 一つを　私の所に 送ってくれま
した。　ホスト側インタフェースは　USBで、 ター
ゲットマイコン側は　６本の信号線を　接続する
事になります。　ライター上のマイコンは、
ATtiny2313-20PUです。 水晶は 12Mhzです。
USB通信の関係でしょう。

　ターゲットインタフェースの末端は、ブレッド
ボードでの使用を　想定して作られたようです。
で、どの色のリード線が　どの信号線に対応する
のか、把握しておく必要が　あります。
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　接続に関しては、電源 Vcc
と、Gndは　絶対 間違えない
ように　ターゲットマイコンに
配線します。　その他の信号
線は、一時的に間違えても
すぐに壊れる事は、無いと思
います。

　では、今回の目標である、AT90S2313に
どのように接続するかを、次のページで
回路図で　示します。

　ついでに、実行時に必要となる動作確認用
の LED＋電流制限抵抗と　10MHzのセラロッ
クも　接続する回路図とします。
LEDの点灯論理は　正論理とします。



AT90S2313と hidspxの　配線図
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AT90S2313と hidspxの　配線完了

PortB.3に接続

PortB.0に接続
セラロック
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hidspx使って AT90S2313へ　書き込み

　皆様　大変お待たせしました。
やっと　AT90S2313へ　プログラムの書き込み
を行います。　
　プログラムは、前回　Miraさんの サイトの
コメント欄から　コピペした LEDblink.BASを
BACOM-AVRで　ビルドして作成した　
LEDblink.hex を　書き込みます。

　で、ちょっと面倒ですが、BASCOM-AVRは
Windows上で動作する開発環境です。
AVR書き込み器 hidspx は　Linux（ Lubuntu ）
の　ターミナル窓で 実行します。

　$ hidspx LEDblink.hex
　を　行います。

　右に　hexファイルを 指定するだけで、すぐに
　書き込めるので、扱いやすいです。

　hidspx は　hexファイルの書き込みだけでなく
-r の　オプションを付ければ、ATマイコンの　型
式名、そしてプログラム用、データ用のフラッシュ
ROMの 容量も表示してくれます。　-e で　フラッ
シュROMの 消去だけも　してくれます。　

では、
動画で 書き込みの実験を 見てみましょう。



'--------------------------------------------------------------
'LEDblink_3.BAS
'--------------------------------------------------------------
$Regfile="2313def.dat"
$Crystal=10000000
$hwstack=32
$swstack=8
$framesize=24
'--------------------------------------------------------------
Config Portb = Output
Dim i as Integer
i=0
Do
    Portb.3 = 1        ' LED on
    i = i + 1
    Waitms 500         ' 500 ms
    Portb.3 = 0        ' LED off
    Waitms 500         ' 500 ms
    If i >= 10  Then
        PORTB.0 = 1        ' LED2 on
        i = 0
        Waitms  200        ' 200 ms
        PORTB.0 = 0        ' LED2 off
    End If
Loop

 　LEDblink_3.BAS

 余分な、コーディングを消したり
　Waitms の 引数というか
　値を 変更しました。

　　これで、正常なコーディングに
　 なったと 思います。



次は gccを使って プログラムをビルド

　次は　gcc-avrを　使って AVRマイコンに書き
込む　hexファイルを　生成します。
まずは、gcc-avrを メイク、インストールします。
Linuxの ターミナルウィンドウで、以下の　コマ
ンドを　実行します。

　$ sudo apt install gcc-avr binutils-avr avr-libc make
　を　行います。

　　正常終了すれば、AVRマイコン用の　gccコンパイラが
　インストールされてます。

　次は　テストプログラムを　生成します。
さしあたり、右の　サンプルソースを
BASCOMのプログラムと　同じクロック周波数
同じ　LED接続の　I/Oポートに　変更して
使用します。

#define F_CPU 10000000UL
#include <avr/io.h>
#include <util/delay.h>

int main( void )
{
    int i;

   DDRB = 0x09; // Set Dir
    while( 1 )
    {
       PORTB = 0x08;
      _delay_ms( 300 );
       PORTB = 0x00;
      _delay_ms( 100 );

       PORTB = 0x01;
      _delay_ms( 100 );
       PORTB = 0x00;
      _delay_ms( 100 );
       PORTB = 0x01;
      _delay_ms( 100 );
       PORTB = 0x00;
      _delay_ms( 100 );
    }
}



　次は　ビルドの方法です。

　コマンドが　３行あって、面倒に思えますが、最初の１回目　ビルドの
コマンドをターミナルに打ち込むと　コマンド履歴を憶えていて
くれますので、2回目以降は　[↑]キーを　押す事で　コマンドの履歴を
出せます。　よって、２回目以降は　楽です。　

 以下の ３行で ビルドを　行います。　　は 英大文字 O です。

 $ avr-gcc -g -O2 -mmcu=at90s2313 -c -o main_2.o main_2.c
 $ avr-gcc -g -O2 -mmcu=at90s2313 -o main_2.elf main_2.o
 $ avr-objcopy -j .text -j .data -O ihex main_2.elf main_2.hex

　を　行います。　これを見ると　
　main_2.c  ->  main_2.o  ->  main_2.elf  ->  main_2.hex　と順に 変換される
　ようです。 　正常に　ビルド出来たら

　$  hidspx main_2.hex　　で、書き込みを　行って下さい。




