
大変 お待たせ いたしました。

　お陰様で、通常は痛みも治まり、YouTube動

画制作に　復帰出来ました。　しかし、まだ　顎

を　大きく開けようとすると痛いんですよね。

　食べる時と、あくびを不用意にやると、口を大

きく開けようとして、アイタタタという状況です。

もう しばらくすると治るでしょう。

　もう　二度と歯は　抜きたくないです。

　余談はさておき、今回から 割り込み処理と

アセンブラを　並行してやろうかと思います。

　当初は、初心者に優しい？ と思われる C言

語で、割り込み処理を　説明しようかと　思って

おりました。　が、最終的に　割り込み処理は　

アセンブラで　作り直す事になると思うので、　

ちょっと技術的に難しい話が　出てくるかも　知

れませんが　アセンブラで　行う事にしました。

　まずは、前回どこまで　話を していたのか

確認するため、

最後の １ページを　再度、説明します。

　まずは、使用する周辺回路の初期化 （ 今回は

16 bit タイマー ch.0 ）を　行っておく必要が　あり

ます。　そして　CPUの割り込み許可フラグを　許

可状態にする必要が　あります。　因みに　電源

ON 直後は　割り込み禁止状態になっています。

　そして、目的の割り込み信号が入ってくると、

まず　現在実行中の命令が 終了したら、

①　PC (プログラムカウンタ) の値と、CCR (コ

　　ンディションコード レジスタ)を　スタックエリア

　　に 積み上げます。

②　CCRの　I bit を　1 にして割り込みを　禁止し

　　ます。

③　割り込み要因に対応する割り込みベクタアド

　　レスを 生成し　その内容 （ 割り込み処理の

　　先頭アドレス ）を　PCに セットします。　

割込み信号が入って来て、割り込み処理が　実行されるまで

　　因みに　①～③のシーケンスは　ハード的に

　　実行されます。

④　割り込み処理ルーチンを　実行します。

　　その前に　割り込み処理内で　使用するレジ　　

スタを　使用する前に　スタックに　積み上げ

　　ます。　そして、割り込み処理を　行います。

　　割り込み処理が　終わったら スタックに積み　　

　上げたレジスタのバックアップを　元のレジス

　　タに戻します。

⑤　そして　RTE命令で　CCRと　PCを復帰し 中

　　断していたプログラムの実行を　再開します。

因みに　C言語で 割り込み処理ルーチンを 作成す

る場合は、レジスタの 退避、復帰は 考える必要は

ありません。　ER0 ～ ER6 の全ての　レジスタの

退避、復帰を 行っていると　思います。

　前ページにて、C言語で 割り込み処理ルーチン

を 作成する場合は、レジスタの 退避、復帰は 考

える必要は ありません。　ER0 ～ ER6 の全ての

　レジスタの 退避、復帰を 行っていると　思いま

す。

　と、書きましたが、基本的に　C言語では　何番

のレジスタを使用するとか　指定出来ませんし

割り込み処理内で　どのレジスタを使用している

という確認も　難しい　という事で、ER0 から ER6

の　全てのレジスタを　スタックに　退避　復帰し

ているものと思います。

　32bitのレジスタを　7本スタックに積み上げる訳

ですが　H8マイコンは　データバスが 16bit幅な

ので　ワード換算で　14個のデータを　割り込み

処理の入口で　スタックに積み上げます。

　割り込み処理から戻る直前に　14個のワード

データを　スタックから レジスタに 復帰するので

レジスタの　退避 復帰処理で　やや時間が かか

ります。　という事で　割り込み処理の内容によっ

ては　応答速度が　遅い。　

という事にも　なりかねません。

　速度の改善を行うには　アセンブラで 割り込み

処理を作成して、実際に使用するレジスタだけを

退避　復帰するようにすれば　改善できます。

　次ページにて、レジスタの退避、復帰のイメー

ジ部分だけを　アセンブラにて示します。

　その前に　アセンブラで使用する命令語という

か　ごく一部の ニーモニックコードのコードの説

明をします。　push命令と　pop命令です。

push命令は　レジスタ内の値を　スタックエリアに

積み上げます。　pop命令は　スタックエリアに積

み上げた値を　レジスタに　戻します。

Interrupt_proc: ; 割込み処理エントリラベル
 ; レジスタ値を スタックへ退避
 push.l er0 ; 実際は E0,R0の 2回Stackへ転送
 push.l er1 ; 実際は E1,R1の 2回Stackへ転送
 push.l er2 ; 実際は E2,R2の 2回Stackへ転送
 push.l er3 ; 実際は E3,R3の 2回Stackへ転送
 push.l er4 ; 実際は E4,R4の 2回Stackへ転送
 push.l er5 ; 実際は E5,R5の 2回Stackへ転送
 push.l er6 ; 実際は E6,R6の 2回Stackへ転送

 ; スタックからレジスタに 値を復帰
 pop.l er6 ; 実際は R6,E6の 2回Stackから転送
 pop.l er5 ; 実際は R5,E5の 2回Stackから転送
 pop.l er4 ; 実際は R4,E4の 2回Stackから転送
 pop.l er3 ; 実際は R3,E3の 2回Stackから転送
 pop.l er2 ; 実際は R2,E2の 2回Stackから転送
 pop.l er1 ; 実際は R1,E1の 2回Stackから転送
 pop.l er0 ; 実際は R0,E0の 2回Stackから転送
 rte ; 割込み処理からの リターン命令

周辺回路アクセス等の 本来の割込み処理

C言語で作成した割り込み処理ルーチン

E6
R6H8は データバスが

16bitなので Word
レジスタを 14回スタ
ックに積み上げる。

E5
R5

E4
R4

E3
R3

E2
R2

E1
R1

E0
R0

H8は データバスが 16bit
なので Wordレジスタ単位で
スタックに　ER0～ER6が
積み上がった状態。　14個

積み上がったWord
レジスタの値を順に
降ろして元のレジス

タに戻す。

来ているので　C言語で割り込み処理を実装する
と　1秒間に １万回以上の割り込み処理を　行う
様な場合、問題が発生するかもしれません。

　H8マイコンに限った話では無
いのですが、最近の 組み込み
用32bit CPUも　16本レジスタが
有るのが　当たり前になって

Interrupt_proc: ; 割込み処理エントリラベル
 ; レジスタ値を スタックへ退避
 push.l er0 ; 実際は E0,R0の 2回Stackへ転送
 push.l er1 ; 実際は E1,R1の 2回Stackへ転送

 ; スタックからレジスタに 値を復帰
 pop.l er1 ; 実際は R1,E1の 2回Stackから転送
 pop.l er0 ; 実際は R0,E0の 2回Stackから転送
 rte ; 割込み処理からの リターン命令

周辺回路アクセス等の 本来の割込み処理

アセンブラで作成した割り込み処理ルーチン

H8は データバスが
16bitなので Word
レジスタを 4回スタ
ックに積み上げる。 E1

R1

E0
R0

H8は データバスが 16bit
なので Wordレジスタ単位で
スタックに　ER0～ER1が
積み上がった状態。　4個

積み上がったWord
レジスタの値を順に
降ろして元のレジス

タに戻す。

　前ページの　C言語で作成した割り込み処理ルーチンに
比べ、えらく短くなったな。　と　思われるかもしれません。

この　アセンブラで作成した割り込み処理ルーチンでは、
本来の割込み処理で使用されるレジスタは　ER0と　ER1の
２本のレジスタがあれば足りるという判断で記述しました。
　実際過去に、インターバルタイマー用、シリアル通信受信
処理に使用したレジスタは　ER0、ER1 の　２本が　あれば
用が 足りてます。　先ほど説明していませんでしたが、
PUSH、POP命令の　右に .l が　あります。 これは　Longの

　　　　　　　　　　　　　　　属性を　意味します。
　　　　　　　　　　　　　　　ニーモニックコードの事を
 オペコードとも表現します。
push.l er0　　この場合、push.l　が　オペコードで
その右の　er0 は オペランドと 表現します。

オペコードが　命令語で　オペランドが　操作される
レジスタや　メモリの値、あるいは即値の場合もあ
ります。　オペランドは　命令によっては無い物も
あります。　割り込みからの　リターン命令　rte に
は　オペランドは、根本的に ありません。
 　アセンブラの事に関しては　少しずつ 小出しに
して行きます。

何故、割り込み＋アセンブラに したか

　もう、前の ２ページで、私が 何故、割り込み

＋アセンブラに したか　分かったと思いますが

必要最低限のレジスタのみ　退避、復帰する事

で、割り込みの応答速度を　早くする事が出来

る　という事です。　H8のようなマイコンの場合

16bitで さほど早くないので、有効と思います。

　それと、レジスタの退避、復帰に　スタックと

いう RAM領域に　積み上げましたが　スタック

が　どういうメモリ領域か　分かりますか。？

　これも　C言語しかやった事のない方には、

イメージしずらい物と思います。　スタックとは、

データを一時的に保存したり、一時的な変数領

域を確保したりするのに、使用します。

　スタックを　構成するのは　スタックエリアとな

る　RAM領域と　そのスタックを　管理するス

タックポインタで　構成されます。

　H8の場合は　ER7が　スタックポインタに　なり

ます。　スタックエリアは　内蔵RAMエリア　アドレ

ス　FFBF20H ～ FFFF1FHの　16Kbyte内に確保

されます。 RAM先頭が

リンカで確保される

静的変数のエリア

です。 静的変数エリア

のサイズは プログ

ラムにより異なりま

す。 間違いなく言

える事は　Stackの

サイズは 200H (512byte) です。

で、ER7のスタックポインタに設定される初期値

は、基本　Stack領域の 最終番地となります。 で

スタックポインタは １Word データを　積み上げる

毎に　-2 されます。　１Word データを降ろす場合

は、 +2 されます。

Static領域

Stack領域(200H)

空き領域？

FFBF20H

FFFF1FH

RAM領域

20H？ 空き領域

FFFD00H

FFFEFFH

　それと、スタックの使い方で、レジスタの退避

復帰以外に　一時的な変数領域を確保したり

するのに　使用します。 と書きましたが、C言語

の　Auto変数の領域が　もろ Stackエリアなの

です。　C言語の関数が　呼び出された時は、

Auto変数が必要な場合に そのメモリエリアを

スタックに確保します。そして、その関数を終了

してリターンする直前に　確保した Auto変数の

領域を　破棄します。　あと、特に組み込みマイ

コンの場合　Stack全体のサイズが さほど大き

くないので、Auto変数で　大きな配列を 作って

は いけません。 スタックオーバーフローで、シ

ステムが 破綻します。

　余談ですが、パソコンは　少々の事では、ス

タックオーバーフローになる事は　無いようで

す。

　というのが、組み込みマイコンでは　まず行い

ませんが、再帰呼び出しというプログラム手法が

あります。　自分の関数の中で　ある条件が成立

した場合に　そこから　自分の関数を　また呼び

出すという手法です。　下手するとスタックを壊し

かねないプログラムになりますが、ソートプログラ

ムで　２分岐のアルゴリズムとして使われます。

20年以上前に　Delphiで　作った事が あります。

　クイックソート、ヒープソートで 使われます。

結構、高速にソート処理が 出来ます。　

余談でした。

　今回の　H8マイコンでは　まずタイマー割り込

みを使用する事を　最初の目標にしてますので

タイマー周辺回路のブロック図を　見てみます。

H8/3069 16bitタイマー

　ルネサスデータシートの概要を　紹介します。

概要：

本 LSI は、3 チャネルの 16 ビットカウンタにより構成

される 16bit タイマを 内蔵しています。

特長

16 ビットタイマの特長を以下に示します。

■最大6 種類のパルス出力、または最大6 種類のパ

ルス入力処理が可能

■各チャネル 2 本、合計 6 本のジェネラルレジスタ

（G R）を持ち、各レジスタ独立に アウトプットコンペア

マッチ／インプットキャプチャの機能設定が可能

■各チャネルとも　8 種類のカウンタ入力クロックを選

択可能

内部クロック：φ、φ/2、φ/4、φ/8　は （ 25MHz、

　　 12.5MHz、6.25MHz、3.125MHz です。 ）

外部クロック：TCLKA、TCLKB、TCLKC、TCLKD

■各チャネルとも　次の動作モードを設定可能

・コンペアマッチによる波形出力：　0 出力／1 出力／ト

グル出力が選択可能（チャネル2 は0 出力／1 出力が

可能）

・インプットキャプチャ機能：　立ち上がりエッジ／立ち

下がりエッジ／両エッジ検出が選択可能

・カウンタクリア機能：　コンペアマッチ／インプットキャ

プチャによる カウンタクリアが 可能

・同期動作：　複数のタイマカウンタ（16TCNT）への同

時書き込みが可能。　コンペアマッチ／インプットキャプ

チャによる同時クリアが可能。　カウンタの同期動作に

よる　各レジスタの同期入出力が可能

・PWM モード：　任意デューティの　PWM 出力が可能

同期動作と組み合わせることにより、最大 3 相の

PWM 出力が 可能。

■チャネル2 は　位相計数モードを設定可能

 2 相エンコーダの　カウント数の自動計測が可能

■内部16 ビットバスによる高速アクセス

 16TCNT、GR の 16 ビットレジスタに対して、16 bit

 バスによる 高速アクセスが 可能

■タイマ出力初期値を　任意に 設定可能

■9 種類の　割り込み要因

 各チャネルとも　コンペアマッチ／インプットキャプ

 チャ兼用　割り込み×2 要因、 オーバフロー割り込

 み×1 要因があり、 それぞれ独立に要求可能

■プログラマブル パターンコントローラ（TPC）の

 出力トリガが 生成可能。　チャネル 0～2 の コンペ

 アマッチ／インプットキャプチャ信号を TPC の 出力

 トリガとして 使用可能

　以上　概要として書いてありましたが、訳 分からな

い用語が　多々出てきて何のこっちゃ という感じだっ

たと思います。　これらの専門用語は、全て理解する

　必要はありません。　さしあたり、自分が使うタイマー

機能に関係する部分だけ理解出来れば ＯＫです。

　多機能なのが有りがたく思えるのは、三相PWMとか

複雑な出力を行う時です。　複雑な出力を行う時は

かゆい所に手が届く的な 便利さが あります。

　次ページに　16bitタイマーのブロック図（全体図）を　

お見せします。

コントロールロジック

クロック
選択

H8/3069F　16 ビットタイマのブロック図 （全体図）

TCLKA～TCLKD

φ、φ/2、φ/4、φ/8

TIOCA0～TIOCA2
TIOCB0～TIOCB2

IMIA0～IMIA2
IMIB0～IMIB2
OVI0～OVI2

16
bit
タ
イ
マ
チ
ャ
ネ
ル
２

16
bit
タ
イ
マ
チ
ャ
ネ
ル
１

16
bit
タ
イ
マ
チ
ャ
ネ
ル
０

TSTR

TSNC

TMDR

TOLR

TISRA

TISRB

TISRC

バ
ス
イ
ン
タ
フ
ェ
｜
ス

モジュールデータバス

内
部
デ
｜
タ
バ
ス

【記号説明】　（ 全て 8ビット ）

TSTR：　タイマスタートレジスタ

TSNC：　タイマシンクロレジスタ

TMDR：　タイマモードレジスタ　

TOLR：　タイマアウトプットレベルセットレジスタ

TISRA:　タイマインタラプトステータスレジスタA

TISRB： タイマインタラプトステータスレジスタB

TISRC:　タイマインタラプトステータスレジスタC

 コントロール
 ロジック

クロック
選択

TCLKA～TCLKD

φ、φ/2、φ/4、φ/8

16

T
C
N
T

比較器

G
R
A

G
R
B

16

T
C
R

T
I
O
R

モジュールデータバス

TIOCA0

TIOCB0

IMIA0

IMIB0

OVI 0

H8/3069F 16 ビットタイマのチャネル0 ブロック図

【記号説明】

16TCNT0：　タイマカウンタ（ 16ビット）

GRA0、　ジェネラルレジスタA、B（インプットキャプチャ

GRB0：　／アウトプットコンペア兼用レジスタ

 （ 16ビット × 2 ））

16TCR0：　タイマコントロールレジスタ （ 8ビット ）　

TIOR0：　 タイマI/Oコントロールレジスタ （ 8ビット ）

実際に　インターバルタイマー処理に使用するレジスタ

　16bit タイマー全体のブロック図と、チャネル 0　

の　ブロック図を紹介しましたが、多数の　設定

用、状態確認用のレジスタが ありました。

　ここでは、単機能のインターバルタイマー実現

に 的を絞り　最低限の設定で動かす事を 実現

します。　４または ５種類のレジスタを用いれば

実現出来ます。　では、どのレジスタを 使うかを

紹介します。

①　16TCR0：　タイマコントロールレジスタ (8bit)

②　GRA0H：　ジェネラルレジスタA (16bit)

③　TISRA：　タイマ割込み、設定 確認 (8bit)

④　TSTR：　タイマスタートレジスタ (8bit)

⑤　TCNT0：　タイマ 0 カウンタ (16bit)

　順次、上記 レジスタの 各ビットの意味を説明し

ます。

①　16TCR0：　タイマコントロールレジスタ (8bit)

16TCRは 8 ビットのレジスタです。16 ビットタイマ

には、各チャネル 1本、計 3 本の 16TCR が あり

ます。 因みに初期値は b7以外は　All 0 です。

TPSC0TPSC1TPSC2CKEG0CKEG1CCLR0CCLR1-

b7 b0b1b2b3b4b5b6

タイマ プリスケーラ
b2～b0

16TCNTの カウント
クロックを選択する

ビットです。

クロックエッジ
b4、b3

クロックの検
出エッジを選
択するビット

です。

カウンタ
クリア b6、b5
カウンタ クリ
ア要因を選
択するビット

です。

リ
ザ
｜
ブ

設定内容

内部clock：φ 25MHz（初期値）

内部clock：φ/2 12.5MHz

内部clock：φ/4 6.25MHz

内部clock：φ/8 3.125MHz

タイマ プリスケーラ設定

TPSC2 TPSC1 TPSC0

0 0 0

0 0 1

0 1 0

0 1 1

TPSC2 TPSC1 TPSC0

1 0 0

1 0 1

1 1 0

1 1 1

設定内容

外部クロックA： TCLKA 端子入力

タイマ プリスケーラ設定　続き

外部クロックB： TCLKB 端子入力

外部クロックC： TCLKC 端子入力

外部クロックD： TCLKD 端子入力

CKEG1 CKEG0

0 0

0 1

1 0

1 1

設定内容

立ち上がりエッジでカウント（初期値）

クロック検出エッジを選択

立ち下がりエッジでカウント

立ち上がり/立ち下がりエッジの
両エッジでカウント

CKEG1 CKEG0

0 0

0 1

1 0

1 1

設定内容

16TCNT のクリア禁止　　（初期値）

16TCNT のカウンタクリア要因を選択します。

GRA のコンペアマッチで　クリア

他のタイマのカウンタクリアに 同期

GRB のコンペアマッチで　クリア

②　GRA0H：　ジェネラルレジスタA (16bit)

16bitタイマー　1チャネルに付き、16bitの　ジェネ

ラルレジスタは、GRAと　GRBの　２本ありますが

今回は、GRAしか使いません。　GRA後ろの 0 は

チャネル 0 の意味です。　その後に Hが　付いて

ますが、これは、16bit GRAの 上位バイトを　アク

セスする用途で用意されたと思います。　H8は　

ビッグエンディアンなので、GRA0Hは　GRAを　ワ

ード アクセスする際の　先頭アドレスにも なりま

す。　そのすぐ後ろのアドレスに　GRA0Lも あり

ますが、GRA0Lは　Byteアクセスしか出来ません

。　今回は　ワードで　アクセスします。

で、ジェネラルレジスタとは　何なのかというと、

用途により色々な機能を持たせる事が出来る

16bitの 多目的レジスタといえます。

で、 今回は 1ms周期の インターバルタイマーと

して使用するので、φ/8の 3.125MHz を入力して

更に分周する事により　1KHzの周期を作り出し

ます。　そのためには　分周値が必要なので

φ/8 を　1KHzで 割ります。

分周値＝ 3,125,000 / 1,000 で　3,125 と　なりま

す。

　この 3,125 を　GRA0に初期値として 書き込み

ます。 で、TCNT0 と　GRA0 とで、コンペアマッチ

（ TCNT0 と　GRA0 が　イコールになる事 ）で

TCNT0を　ゼロクリアして　割り込み信号を 出す

ようにします。　16bit カウンタ TCNT0は 初期値

0 で、カウント開始すると　入力クロックに従いイ

ンクリメント動作を　行います。 そして TCNT0 =

GRA0 （3,125）になった瞬間、TCNT0 = 0 になり

タイマー 0 から割り込み信号が 出ます。

③　TISRA：　タイマインタラプトステータスレジ

スタA (8bit) は　8 ビットのリード／ライト可能な

レジスタで、GRAの コンペアマッチ／インプット

キャプチャの発生を示し、GRAの コンペアマッチ

／インプ ットキャプチャ割り込み要求の許可／禁

止を制御します。

IMFA0IMFA1IMFA2IMIEA0IMIEA1IMIEA2-

b7 b0b1b2b3b4b5b6

-

インプットキャプチャ／
コンペアマッチフラグ

b2 ～ b0
GRAによるコンペアマッ
チ/インプットキャプチャ

の発生を示す
ステータスフラグです。

フラグをクリアするため
の 0 書込みのみ可能

です。

インプットキャプチャ／
コンペアマッチ

インタラプトイネーブル
b6 ～ b4

IMFAフラグによる割り
込みを許可／禁止しま

す。

リ
ザ
｜
ブ

リ
ザ
｜
ブ

左のレジスタの図を見ると、割込み許可/禁止の

フラグ b6 ～ b4と、インプットキャプチャ/コンペア

マッチ フラグ b2 ～ b0 の　各 ３個ありますが、こ

れは　16bitタイマーの チャネル番号と 対応して

いるので、今回は チャネル0 16bitタイマーの

GRAを　使用しているので　フラグ名の最後の ２

文字が　A0 の物だけに 着目すればいいです。

　よって　今回使用するのは　b4の IMIEA0 と　b0

の　IMFA0　２つだけです。

④　TSTR：　タイマスタートレジスタは　8 ビットの

リード／ライト可能なレジスタで、チャネル 0 ～ 2

の　16TCNT（ 16bit カウンタ ） の動作／停止を

選択します。

IMFA0IMFA1IMFA2IMIEA0IMIEA1IMIEA2-

b7 b0b1b2b3b4b5b6

-

インプットキャプチャ／
コンペアマッチフラグ

b2 ～ b0
GRAによるコンペアマッ
チ/インプットキャプチャ

の発生を示す
ステータスフラグです。

フラグをクリアするため
の 0 書込みのみ可能

です。

インプットキャプチャ／
コンペアマッチ

インタラプトイネーブル
b6 ～ b4

IMFAフラグによる割り
込みを許可／禁止しま

す。

リ
ザ
｜
ブ

リ
ザ
｜
ブ

STR0STR1STR2-

b7 b0b1b2b3b4b5b6

カウンタスタート 2～0
16bit TCNT2 ～
16 bit TCNT0

の動作／停止を
選択するビットです。

1 = カウント動作
0 = 停止

　今回は　b0 の　STR0 しか使用しません。

カウンタ 0 を　スタートさせる時 1 に　します。

カウンタ 0 を　ストップさせる時 0 に　します。

　これは、電源 ON 時は　0 に　初期化されてい

ます。　一旦、インターバルタイマーを起動したら

電源 OFF まで　動かし続ける場合は　TCNT は

何もアクセスする必要は　ありません。

　一つ　気にしていたのは　一旦タイマーを起動

した後に　STR0 = 0 にして、タイマーを　停止さ

せた場合に、TCNT0 カウンタ内に 中途半端な

カウント値が　残っていると思われます。

　この状態で　STR0 = 1 で　カウンターを　走ら

せると　最初の１回目だけ　1msに 満たない中途

半端な　タイムインターバルで　割り込みが　か

かる恐れが　あります。

よって、STR0 = 1 に する直前で　TCNT0 に　0

を　書き込んでから、STR0 = 1 で　TCNT0 を　

RUNさせようと 思います。　

⑤　TCNT0：　タイマ 0 カウンタ (16bit)

　これは、２ページ前でも説明しましたが、GRAと

組みにして使用する　16bit の カウンタ です。

TSTR：　タイマスタート　レジスタ

今回の　メイン関数を含むソース　1/3

 .include "H8_define.inc" ; Assemble Comon File

; ** メイン処理
; ----------------------------
 .export _main
_main:
 mov.b #H'E0, r0l ; b7:青LED、b6:黄LED、b5:赤LED 出力に設定
 mov.b r0l, @h8_PBddr ; PortB 入出力設定

 bsr _init_1ms_timer ; タイマー処理初期化 呼び出し　
 bsr _enable_interrupt ; 割り込み処理 許可 呼び出し
loop: ; 空ループ
 bra loop
 rts ; リターン ツゥ サブルーチ ン

atest_1.src

今回の　メイン関数を含むソース　2/3

; ** 全割り込みの 許可
; ----------------------------
_enable_interrupt:
 _sti ; 割り込み許可マクロ
 rts ; リターン ツゥ サブルーチ ン

;** 1ミリ秒タイマー初期化処理
;-----------------------------------
init_1ms_timer:
 bclr #0, @h8_t16_tstr ; TSTR = 0　カウンタを 一旦停止させる
 mov.w #0, r0
 mov.w r0, @h8_t16_cnt0h ; TCNT0 = 0　カウンタを ゼロクリア
 mov.b #H'23, r0l ; tcr_0 = 0010 0011
 mov.b r0l, @h8_t16_tcr0 ; GRAコンペアマッチ、P_Edge、φ/8
 mov.w #3125, r0
 mov.w r0, @h8_t16_gra0h ; GRA0 = 3125 1ms 分周値設定
 bset #4, @h8_t16_tisra ; IMIEA0 = 1　GRA0によるコンペアマッチで割り込みを出す
 bset #0, @h8_t16_tstr ; TSTR = 1　カウンタを 走らせる
 rts ; リターン ツゥ サブルーチ ン

atest_1.src

;>> 16bitタイマ0 GRA 割込み処理 <<
;*************************************

.global _INT_IMI_A0 ; ★　名前を デフォルトから ちょっと 変えている
_INT_IMI_A0: ; ラベル（ エントリアドレス ）

bset #5, @h8_PBdr ; PB.b7(赤LED)に 1 を 入れる (赤点灯)
push.l er0 ; ER0,ER1 を スタックへ退避
push.l er1

;; btst #0, @h8_t16_tisra ; IMFA0 = 1 確認
;; beq p002 ; IMFA0 が 1ではない時 p002へ飛ぶ

bclr #0, @h8_t16_tisra ; IMFA0 = 0 GRAフラグクリア
btst #7, @h8_PBdr ; PB.b7(青LED)の 確認
beq p001
bclr #7, @h8_PBdr ; PB.b7(青LED)に 0 を入れる (青消灯)
bra p002

p001: bset #7, @h8_PBdr ; PB.b7(青LED)に 1 を入れる (青点灯)

p002: pop.ler1 ; ER1,ER0 を スタックから復帰
pop.ler0
bclr #5, @h8_PBdr ; PB.b5(赤LED)に 0 を入れる (赤消灯)
rte

今回の　メイン関数を含むソース　3/3

