
本題に入る前に

　実は、10日前ぐらいから一つ悩んでいた事が

ありました。　それは、割り込み処理をベクトル

テーブルに登録するやり方です。

　通常のC、C++アプリケーション開発として

HEWでプロジェクトを生成すると、自動生成され

るソースにて、割り込み処理の登録に関わる

ソースは　intprg.c しかありません。このソース

は　Cで出来ており、ベクトルテーブルの並び

で、中身が空の ダミーの割り込み処理関数の

集合体です。　ちょっと見は　ベクトルテーブル

と間違いそうですが、ベクトルテーブルでは　あ

りません。　この intprg.cの　目的の割り込みベ

クトルに対応する　割り込み処理ルーチンの関

数内に　C言語で 割り込み処理を実装する事

になります。　文章ばかりだと イメージが掴み

にくいので　例を示します。

// vector 23 ADI
__interrupt(vect=23) void INT_ADI(void) {/* sleep(); */}
// vector 24 IMIA0
__interrupt(vect=24) void INT_IMIA0(void) {/* sleep(); */}
// vector 25 IMIB0
__interrupt(vect=25) void INT_IMIB0(void) {/* sleep(); */}

vector 23 ADI　から　vector 25 IMIB0の 割り込み

処理のダミー関数です。　vector 24 IMIA0 に　割

り込み処理を実装します。

INT_MIA0 関数の 赤丸内の　緑の　

/* sleep(); */ を　書き変えます。

// vector 24 IMIA0
__interrupt(vect=24) void INT_IMIA0(void) {
 ITU.TISRA.BIT.IMFA0 = 0; // 16bit タイマー IMFA0 クリア

Tcu_cn.ctr++;
if(Tcu_cn.tm1 > 0) Tcu_cn.tm1--;
if(Tcu_cn.tm2 > 0) Tcu_cn.tm2--;

}
// vector 25 IMIB0
__interrupt(vect=25) void INT_IMIB0(void) {/* sleep(); */}

で、前回、C言語で　メイン処理を作成して、ア

センブラで、割り込み処理を　行うと言ってまし

たが、HEWで、新規プロジェクト作成時に表示

されるプロジェクト

タイプは　一番上

の Application が

デフォルトです。

通常、このデフォ

ルト状態で　C、

C++で プログラムを 作成して行きます。　で、

一部アセンブラのサブルーチン関数を混ぜて

開発する事も可能です。 ところが、前ページの

intprg.c 内の 割り込み関数スケルトン内に

Cで　割り込み処理を記述する事は可能ですが

アセンブラで　書き込む事は出来ません。

　逆に　新規作成時プロジェクトタイプで　上か

ら２番目の　Assembly Application では　メイン

も含め、全てアセンブラで記述する事になってお

り、割り込み処理も　アセンブラで、記述出来ま

す。　という事で、前回やむなく　この方法で タイ

マー割り込み処理プログラムを 作成しました。

　が、今となっては、アセンブラで全て記述する事

は、まず やらない選択と 思います。

　メインをC言語で作って　割り込み処理部分をア

センブラで記述出来ないか、このHEWの H8環境

では出来ないと判断しました。　何故かというと、

HEWの H8環境で 通常のアプリケーション作成で

は、ベクターテーブルが　見当たらないのです。　

だいぶ探しましたが見つかりませんでした。

　実行する時は絶対必要なので　意図的に隠し

てる　としか思えません。　という事で　メインを

C言語で　割り込み処理を アセンブラでやるのは

断念しました。　割り込み処理は、前ページの

やり方で　C言語で　作成します。

　という事で、割り込み処理は　C言語

で 行う事に した事もあり、気が楽にな

りました。

　それと、アセンブラを　Cに置き変える

事により、キー入力の タイプ量も減り、

ソースが 約半分に減ります。　その分

見やすくなるし、初心者の方にも　分か

りやすいコーディングになると思いま

す。

　因みにアセンブラで作成した 16bitタ

イマー0の 初期化処理を　C言語に 作

り直しました。

参考のため お見せします。

 .global _init_1ms_timer
_init_1ms_timer:
 bclr #0, @h8_t16_tstr ; TSTR = 0　カウンタを 一旦停止させる
 mov.w #0, r0
 mov.w r0, @h8_t16_cnt0h ; TCNT0 = 0　カウンタを ゼロクリア
 mov.b #H'23, r0l ; tcr_0 = 0010 0011
 mov.b r0l, @h8_t16_tcr0 ; GRAコンペアマッチ、P_Edge、φ/8
 mov.w #3125, r0
 mov.w r0, @h8_t16_gra0h ; GRA0 = 3125 1ms 分周値設定
 bset #4, @h8_t16_tisra ; IMIEA0 = 1　GRA0によるコンペア
 ; マッチ割り込みを出す
 bset #0, @h8_t16_tstr ; TSTR = 1　カウンタを 走らせる
 rts ; リターン ツゥ サブルーチ ン

void init_1ms_timer(void)
{
 ITU.TSTR.BIT.STR0 = 0; // TSTR = 0　カウンタを 一旦停止
 ITU0.TCNT = 0; // TCNT0 = 0　カウンタを ゼロクリア
 ITU0.TCR.BYTE = 0x23; // GRAコンペアマッチ、P_Edge、φ/8
 ITU0.GRA = 3125; // GRA0 = 3125 1ms 分周値設定
 ITU.TISRA.BIT.IMIEA0 = 1; // IMIEA0 = 1　GRA0によるコンペアマッチ
 // で 割り込みを出す
 ITU.TSTR.BIT.STR0 = 1; // TSTR = 1　カウンタを 走らせる
}

やっと本題に

　インターバルタイマーに限った事で

は ありませんが、C言語から使いや

すい（ と思われる ） I/O処理サブ

ルーチンを　今後 少しずつ用意して

行きます。　

　今、さしあたり用意した I/O処理関

数の ヘッダーファイルを　お見せしま

す。 凡そ、過去に作ったR8Cマイコン

用の　IOCS ルーチンに 似た物になり

ます。

　まずは、右側のプロトタイプ宣言を

読み上げます。

　文字が小さくて申し訳ありません。

// CPU周辺　基本機能
// ---
int get_cpu_mode(void); // CPU Mode取り出し(有効 最下位 3bit)
void enable_interrupt(void); // 割り込み許可
void disable_interrupt(void); // 割り込み禁止
void setup_wdt(void); // ウォッチドッグタイマ有効化
void stop_wdt(void); // ウォッチドッグタイマ停止
void refresh_wdt(void); // ウォッチドッグタイマ リフレッシュ
int check_reset(void); // CPU リセット要因 確認
void soft_reset(void); // ソフトによる CPUリセット
void sleep_func(void); // CPU スリープに移行させる

// 1ms_tamer処理
// ---
void init_1ms_timer(void); // 1ms インターバルタイマー初期化
_UWORD get_counter_1m(void); // 1msフリーランカウンタ読み出し
void set_timer_1m1(_UWORD n); // 1msタイマー１初期値設定
_UWORD get_timer_1m1(void); // 1msタイマー１現在値読み出し
void set_timer_1m2(_UWORD n); // 1msタイマー２初期値設定
_UWORD get_timer_1m2(void); // 1msタイマー２現在値読み出し
void set_timer_1m3(_UWORD n); // 1msタイマー３初期値設定
_UWORD get_timer_1m3(void); // 1msタイマー３現在値読み出し
void set_timer_1m4(_UWORD n); // 1msタイマー４初期値設定
_UWORD get_timer_1m4(void); // 1msタイマー４現在値読み出し

CPU周辺 基本機能　割り込み 許可、禁止

　この分類の機能は　CPUコア周辺の　ごく基

本的な機能を　サポートします。

　一部、特別な命令を使用する関数もあるので

アセンブラで構成されています。

①　int get_cpu_mode(void); // CPU Mode取

り出し (有効 最下位 3bit)　この関数は MDCR

というレジスタ値を　読み出しています。　値は

下位 3bitのみ有効で、この値は 書き込みモー

ド、実行モードを決める モード端子から読み込

んだ値を そのまま出しているようで、モード設

定の DIP-SWを 読み出しているという事です。

　よって実行時　モード 5 なので　5 しか出てき

ません。 あまり意味のない読み出しですね。

②　void enable_interrupt(void); // 割り込み

許可　です。

　NMI以外の　全ての割り込みを許可します。

電源ON 直後は、割り込み禁止状態になってま

す。　通常エンドレスループに入る前に　各 I/O

ポート、各周辺回路の初期化を行います。　周辺

回路の中には割り込み出力を出す物もありま

す。それらを含め一通り 初期化処理が終われば

enable_interrupt 関数で 割り込みを許可します。

割り込みを許可したら、メインのエンドレスループ

に 入ります。

③　void disable_interrupt(void); // 割り込み

禁止　が、あります。　これは、排他制御的な用

途で、処理の途中で割り込んで欲しくない時に、

一時的（ 極一瞬 ）　disable_interrupt 関数で　割

り込みを禁止して　フラグや カウンタの更新を行

い、速やかに enable_interrupt 関数で　割り込み

受付を 再開します。　NMI は 禁止出来ません。

　ウォッチドッグタイマーとは、制御用のソフト

ウェアが　正常に動作しているか確認するため

の検証機能です。 ウォッチドッグタイマーは無

くても、本来のプログラム機能を 実行する事は

可能です。　むしろ、デバッグ中は　一時的に

止めたりすると CPUリセットが　かかり煩わし

いので外しておいた方が　いいです。

　よって、ウォッチドッグタイマーを 実装する場

合は　プログラムが完全に出来上がってから

ウォッチドッグタイマーを 実装する 事になりま

す。　業務で使用するシステムで 信頼性を高

める必要がある場合に使用します。

④　void setup_wdt(void); // ウォッチドッグ

タイマ有効化

⑤　void stop_wdt(void); // ウォッチドッグ

タイマ停止

ウォッチドッグタイマー機能 ⑥　void refresh_wdt(void); // ウォッチドッグタ

イマ リフレッシュ

　３本の関数がありますが、stop_wdt関数は　一

度も使った事がありません。　ウォッチドッグタイ

マを　途中で　一時的に止めて、また再開するよ

うな使い方は　まず しません。

　そもそも、ウォッチドッグタイマーとは　何なのか

というと、setup_wdt 関数を呼び出すと　ウォッチ

ドッグタイマーは　カウント動作を始めます。　

　その後、そのまま放置すると　約 40ms の 時間

経過で　いきなりCPU リセットが　かかります。

　よって　setup_wdt 関数を呼び出し後、40ms以

内の周期で　継続的に　refresh_wdt 関数を　呼

び出し続ける必要が あります。　よってメイン

ループ処理のあちこちに　refresh_wdt 関数を 配

置する必要が　あります。　割り込み処理の中に

は　入れてはいけません。

⑦　int check_reset(void); // CPU リセット要

　　因 確認

⑧　void soft_reset(void); // ソフトによる CPU

　　リセット

⑨　void sleep_func(void); // CPU スリープ

　　に移行させる

　check_reset 関数は　CPUリセットが　かかった

要因を　関数値で 返します。 関数値 = 0 で　あ

れば、パワーONリセット、リセットスイッチによる

リセットで、関数値 = 0x80 で あれば　wdtの　タ

イムアップによるリセットです。　よって　起動時

ウォッチドッグタイマーによる リセットが　かかっ

たのか　確認出来ます。

soft_reset 関数は、ソフトウェアによる　CPU

CPUリセットと　CPUスリープ処理 　リセット処理です。

割り込みを 禁止して　0 番地の　CPUリセットの

ベクトルアドレスを　読み出して、その番地に

Jump します。 その後、check_reset 関数で　ス

テータスを　読み出すと　0 です。

sleep_func 関数は　CPUを スリープモードに　移

行します。　スリープモードは　CPUの レジスタ、

及び RAMは　状態を そのまま保持して CPUが

停止した状態になる事です。

　電源の　OFF、ON　リセット、割り込み受付けに

よって、ウェイクアップするようです。　が、私はま

だ、スリープモードの動作確認を　やった事が　

ありません。　近いうちやっておきます。

　1ms taimer処理とは　1ms分解能のタイマー処

理という事です。

⑩　void init_1ms_timer(void); // 1ms インター

　　バルタイマー初期化

⑪　_UWORD get_counter_1m(void); // 1msフ

　　リーランカウンタ読み出し

⑫　void set_timer_1m1(_UWORD n); // 1ms

　　タイマー１初期値設定

⑬　_UWORD get_timer_1m1(void); // 1msタイ

　　マー １ 現在値読み出し

⑭　ｖoid set_timer_1m2(_UWORD n); // 1msタ

　　イマー２初期値設定

⑮　_UWORD get_timer_1m2(void); // 1msタ　

　　イマー２現在値読み出し

1ms　timer処理 ⑯　ｖoid set_timer_1m3(_UWORD n); // 1msタ

　　イマー３初期値設定

⑰　_UWORD get_timer_1m3(void); // 1msタ　

　　イマー３現在値読み出し

⑱　ｖoid set_timer_1m4(_UWORD n); // 1msタ

　　イマー４初期値設定

⑲　_UWORD get_timer_1m4(void); // 1msタ　

　　イマー４現在値読み出し

　まず、init_1ms_timer 関数が　インターバルタイ

マーの初期化処理で　最初に呼び出します。

　次の、get_counter_1m 関数は、init_1ms_timer

関数が、呼び出されたタイミングで　1ms周期で　

インクリメントが　継続的に　行われます。

符号なし単精度整数なので　65,535 まで　カウン

トすると　次は ゼロに戻り カウントは 続けます。

　後、⑫から　⑲まで　関数が　ありますが、これは　２つの関数

で一組の　インターバルタイマー処理が　４チャネルあります。　

４つのチャネルは　全く同じ仕様です。

チャネル１が、⑫ set_timer_1m1関数と　⑬ get_timer_1m1関数

チャネル２が、⑭ set_timer_1m2関数と　⑮ get_timer_1m2関数

チャネル３が、⑯ set_timer_1m3関数と　⑰ get_timer_1m3関数

チャネル４が、⑱ set_timer_1m4関数と　⑲ get_timer_1m4関数

　４つのチャネルは、全く同じ仕様なので　set_timer_1m1関数と

get_timer_1m1関数で、動作を説明します。　通常この２つの関数

でアクセスするカウンタ変数は　0 で、 0 の場合、何もしません。

0 を　維持してます。　set_timer_1m1(1000); を　行うと、カウン

タ変数に　1000が　入ります。　そして　1msのタイマー割り込み

で、1ms毎に　デクリメント（ -1 ）されます。　そして　１秒経過後

カウンタ変数は　0 に なります。

　そして、get_timer_1m1関数は、関数を呼び出した瞬間の　カウ

ンタ変数の瞬時値を　返します。

　このような仕様にすると何が便

利なのかというと、例えば、

Arduinoの環境では　Delay関数が

あります。　これは　Delay(200);

と設定すると　0.2秒経過後に　元

の呼び出し側に CPUの制御権が

戻ってきます。　単に時間待ちだ

けであれば、これでいいのですが

0.2秒の待ち時間の間に別の仕事

をしたい。という場合は　0.2秒 経

過しないと　Delay関数から抜け出

して来ないので出来ません。

　よって、最初に監視時間を設定

し、そして 1/1000秒単位で　瞬時

値の　経過時間を確認できれば

その間に　別の小さな処理が出

来ます。　という事です。

　用途によっては、シリアル通信を行う上で　通

信制御を行う場合が、あります。　一まとまりの

データ転送の監視時間が　1分で、その中で　１

ブロックの 電文を送信して　相手側から、ACK

、NAKを 待ち受ける場合、数秒の時間監視を

行う事になると思います。　

今回は、もっと簡単な例で、マルチで時間監視

出来るプログラムを　作ってみます。　今回の

H8/3069F基板には　LEDを　３個実装している

ので、３個のLEDを　バラバラの周期で　パラっ

て点灯させてみます。

一応　各LEDの点滅周期は

赤LED　 0.5 秒 周期

青LED　 0.3 秒 周期

黄LED　 0.75 秒 周期で

点滅を　繰り返します。

右のソースは　今回の　C_test_4.c です。

 init_1ms_timer(); // インターバルタイマー初期化
 enable_interrupt(); // 割り込み許可
 while(1) // 無限ループ
 {
 if(get_timer_1m1() == 0)
 {
 set_timer_1m1(500); // 赤LED 点滅設定
 if(PBDR.BIT.B5 == 0) PBDR.BIT.B5 = 1;
 else PBDR.BIT.B5 = 0;
 }
 if(get_timer_1m2() == 0)
 {
 set_timer_1m2(300); // 青LED 点滅設定
 if(PBDR.BIT.B7 == 0) PBDR.BIT.B7 = 1;
 else PBDR.BIT.B7 = 0;
 }
 if(get_timer_1m3() == 0)
 {
 set_timer_1m3(750); // 黄LED 点滅設定
 if(PBDR.BIT.B6 == 0) PBDR.BIT.B6 = 1;
 else PBDR.BIT.B6 = 0;
 }
 }

