
前回のシリアルポートで　初期化して送信出来ないトラブルについて

　最初、考えにくい現象で　悩んでましたが、

　それとは別に、前々回タイマー割り込みを使

用したインターバルタイマ　４チャネルの実装を

しました。　で それとは別に　今回単純にプロ

グラムで　forループによる ミリセコンド単位の

大雑把な　Wait処理関数を作り 追加しました。

　その時、最初に単体試験で 1ミリセコンドの

forループの　回数の調整を やっていました。　

その後、他のモジュールと連結して　テストし始

めたら、forループの　Wait処理の 時間が短く

なっている事に気付きました。　for文の 1ミリセ

コンドの　回る回数は 同じだったので そうなる

と　１回の回る速度が速くなった事になります。

エーッ、何で　？

また悩ましいトラブルが　発生しました。　

　しかし、この現象に関しては　過去に　似たよう

な事を経験していて　原因と考えられる事が　推

測出来ました。　但し、早くなる原因は分かるの

ですが、何故途中から早くなりだしたかが、分り

ません。　早くなる理由は、空ループの ｆｏｒ文の

カウンタ変数が　i とすれば その i は 通常 RAM

メモリ上に　確保されます。　それが、RAMメモリ

ではなくて、CPUのレジスタ上に 確保されて　0

から、最終値まで回ると　メモリをアクセスする時

間が 無くなるので その分早くなります。俗にいう

レジスタ変数です。　でも、これは 人間がアセン

ブラで作らないなら だれがやるんだ。 というと　

コンパイラの　最適化処理を行う オプティマイザ

です。 ルネサスの H8マイコンのオプティマイザ

に関わる資料で H8マイコンの オプティマイザは

レジスタ変数で最適化する機能も あるようです。

　で、forループの　Wait処理の 時間が短くなっ

た事が、コンパイラの　オプティマイザによる最

適化の影響なのか確認するため、forループの

カウンタ変数　i と　j に　volatile 修飾子を付け

て、　i と　j に　関わる最適化を除外する実験

を 行いました。

　その動画を　お見せします。

それと、今回の事で　コンパイラの　オプティマ

イザの最適化処理が　シリアル通信の障害を

作り出している可能性も　あるのではないかと

今、考えています。　シリアル通信の障害にも

光が 見えて来た気がします。 シリアル通信の

SCI周辺回路の初期化処理において、言葉 悪

いですけど　コンパイラの オプチィマイザに　明

らかに 改ざんされそうな所が　一箇所ありま

す。　原因となる箇所は見つけましたが、どの

ように　対応するかは検討中です。

　詳細は、動画の後に　説明します。

　　volatile修飾子

　volatile修飾子をつけて変数宣言すると，その変数は最適化の対象から外され、

レジスタに割り付ける最適化などを行わなくなります。　volatile指定された変数に

対する操作を行うときは、必ずメモリから値を読み込み、操作後にメモリへ値を

書き込むコードに なります。

また，volatile指定された　変数のアクセス幅も 変更されません。

　volatile指定されていない変数は，最適化によってレジスタに割り付けられ、

その変数を メモリからロードするコードが　削除されることがあります。　また，

volatile指定されていない変数に　同じ値を代入する場合、冗長な命令と解釈されて

最適化により　命令が削除されることもあります。

特に　周辺I/Oレジスタへ アクセスする変数や、割り込み処理で　値が変更される変数、

また、外部から 値が変更される変数に対しては、volatile指定する必要が　あります。

volatile指定すべきところで　指定されていなかった場合、次の現象が起こることがあります。

①　正しい計算結果が得られない。

②　ループ内で 変数を使っていた場合、ループから 抜け出せない。

③　命令の実行順序が変わる。　　④　メモリのアクセス回数・アクセス幅が変わる

ルネサス資料による　volatile修飾子の説明

　volatile修飾子　（ 前ページの続き ）

ただし、volatile指定した変数を　使用する際，

ある区間で　その変数の値が 外部から変更されないことが　自明な場合、

volatile指定されていない変数に、その値を代入して

その変数を参照することにより、その変数が最適化され

実行速度が 向上する可能性が　あります。

という事でした。

この、volatile の　説明は 役に立ちました。

これを　踏まえて　H8の　シリアル通信周辺回路　SCI の

初期化、 1 byte送信処理の　ソースを見てみます。

シリアル通信SCI の　初期化処理

//********************************
//** SCI ch.0 初期化処理 **
//********************************
static void init_sci_0(void)
{

P9DDR = 0x03; // P9.1(TxD.1)と P9.0(TxD.0)を 出力にする。
// SCI0.SCMR.BIT.SMIF = 1; // P9.0 = TxD.0 , P9.2 = RxD.0

SCI0.SCR.BYTE = 0; // SCIを 停止
SCI0.SMR.BYTE = S_tbl.cks; // 語構成 "N81" , ボーレイトクロック選択
SCI0.BRR = S_tbl.brr; // ボーレイト分周値設定
SCI0.SCR.BYTE = 0x70; // (RIE=1、TE=1、RE=1)
wait_ms(10); // 10[ms] 待ち

SCI0.SSR.BYTE; // Dummy Read
SCI0.SSR.BYTE = 0x80; // Clear Error Flag
init_ring_0(); // リングバッファ初期化

}

コンパイラのオプティマイザに
削除される危険性が 高い。

この行のコーディングは、SCI
周辺回路の都合で １回内容を
読み出さないと、うまく初期化
されないものと 思われます。

SCI は、チャネル 0 と　チャネル1の
２つがありますが、内容が殆ど同じ
なので、チャネル 0 で 説明します。

シリアル通信SCI の　1byte送信処理

//********************************
//** SCI ch.0 1byte 送信 **
//********************************
void send_sci_0(char dt)
{
PBDR.BIT.B7 = 1; // 青LED 点灯

while(SCI0.SSR.BIT.TDRE == 0); // 送信レディ待ち
SCI0.TDR = dt; // 1byte 送信

PBDR.BIT.B7 = 0; // 青LED 消灯
}

ここも、コンパイラのオプティマイザに
改ざんされる 恐れがあります。

この行のコーディングは、1byte送信時に、前の
データをシフトレジスタに渡し　送信レジスタが、

空になった事を　確認する処理です。

　これらの　オプティマイザの改ざんによる誤動作を防ぐために

前のページでは　SCI0.SSR.BYTE、このページでは　SCI0.SSR.

BIT.TDRE　どちらも、SSR ですね。　SSRは　シリアル通信のス

テータスレジスタです。　これらに　volatile を　付ければいいん

じゃないか。　と思われる方もいると思います。　しかし、SCI0.SSR

には　volatile を　付けられないのです。　何故かというと、

ルネサス資料による　volatile修飾子の説明にて

　volatile修飾子をつけて変数

宣言する と書いてあります。

しかし、SCI0.SSR.BYTE 及び

SCI0.SSR.BIT.TDRE は、変数

では　ありません。　iodefine.h

内で　#define で　宣言されて

いる　構造体、共用体の オフ

セットアドレスを計算できる周

辺回路レジスタの アドレス値。

これは、メモリ上に実態のない

一種のマクロですね。　よって

変数では無いので、volatile を

付ける事は　出来ません。

　

　では、どうするかというと　今のC言語ソース

で、どうすれば 問題が解決出来るかは、今の

ところ思いつきません。

　その前に　アドレス情報を持つマクロが、最適

化されるのか どうかも 分かりません。

　一応、念のため最適化で改ざんされる恐れの

ある部分を　局所的に　アセンブラのサブルー

チンに 置き変える事にしました。

　この処置を行った後に、シリアル通信の初期

化と、1byte 送信のプログラムの動きを確認し

てみました。

　残念ながら、結果は　1byte 送信してくれませ

んでした。　

ガクッと　きましたね。

　この事からして、1byte送信が 出来ない原因は

他にある。　と 考えないと いけません。

 　今までは、初期化処理に　問題があるのでは

ないかと、ずっと考えていましたが、1byte送信処

理も 確認してみました。　凡そ 20年前に作成し

た、正常に動作するアセンブラの関数を C言語

に 移植した訳ですが、再度 見なおすと　1byte送

信処理にて、C言語側で　１行抜けている部分を

見つけました。

　 もしかして、と思って　その１行を追加しまし

た。　 そして、ビルドして　マイコンに書き込み

動作確認を　行いました。

　さて　どうなるか。？

　左に　SCI0の １文字送信の　send_sci_0 関数で

す。　内部を　お見せします。　上が　変更前で、

下が　変更後です。

　下は、変更箇所が２ヶ所ありますが、上の赤枠

で囲った部分は　変更前の　while ループと その

中を　アセンブラの関数で　置き換えた物です。

この、while ループの置き換えは、効果が　ありま

せんでした。

　緑の枠で囲った部分が　アセンブラからの移植

で　抜けていた行です。　今回この行を追加した

お陰で、正常に　文字及び　文字列を　送信でき

る事を確認しました。　あと　シリアル通信では

受信処理も必要ですが、受信は　受信割り込み

を用い　255byteの リングバッファを　間に挟む

構成で作成しました。　受信の方は　トラブル無く

すんなり出来ました。　SCI0、SCI1 共に　連続し

た送受信に 成功しました。

void send_sci_0(char dt)
{
 PBDR.BIT.B7 = 1; // 青LED 点灯

while(SCI0.SSR.BIT.TDRE == 0);
// 送信レディ待ち

SCI0.TDR = dt; // 1byte 送信
 PBDR.BIT.B7 = 0; // 青LED 消灯
}

1文字送信　（ 変更前 ）

void send_sci_0(char dt)
{
 PBDR.BIT.B7 = 1; // 青LED 点灯

send_sci0_check(); // ★ 送信レデイ待ち

SCI0.TDR = dt; // 1byte 送信
SCI0.SSR.BYTE &= ~0x80; // 送信開始

 PBDR.BIT.B7 = 0; // 青LED 消灯
}

1文字送信　（ 変更後 ）

