
シリアルデータ送信前の 文字列編集処理

　今回は、シリアルデータ通信において、送信

電文を組み立てるための　文字列編集処理の

関数について使い方を説明します。

　その前に電文とは　何かというと、遥か昔は

ホストと　端末という概念で　データ通信は行わ

れていました。　ホストは データを管理する中

心となるコンピュータです。　端末は　ホストの

下に　複数接続され　電話回線にモデムを接

続して　遠距離の通信が行われていました。

　で、通信電文ですが　その当時からテキスト

（ ASCII 文字列 ）で、構成された数十byteから

最大で　200byteぐらいの　電文のやり取りを　

行っていました。　最大 200byteというのは、

あまり電文が長いとその分　パルス性のノイズ

に当たる確率が　高くなるので　最大 200byte

ぐらいというのが　あるようです。

　それと、ある程度まとまったブロック Max 200

byteを　ひとつの電文として送ります。　その時

電文を、正常に受けたよ。　とか　受信データが

壊れているので　再送信してくれ。とかの要求が

受信側から送信側に　送られる場合があります。

　これらは　回線制御コードとも呼ばれます。

これらは、ASCIIコードの 00h ～ 1Fh の範囲に

制御コード（ 文字として見る事の出来ないコード

 ）として宣言してあります。　回線制御コードは

EOT、ENQ、ACK、NAKとかが あります。　これら

は 1byte単独で送る場合が 多いです。 電文の

中に含めるコードも あります。　SOH、STX、ETX

が　あります。　あとプリンター等の制御コードで

CR（ キャリッジリターン ）、LF（ ラインフィード）が

あります。　CR、LFは　1行改行する時に　使用し

ます。　あと　FFというのもあります。　これは、改

ページコードです。

　あと、最近は見ませんが　EIA-232Cで　パソ

コンと　XYプロッタを接続する際に　フロー制御

で　Xon、Xoff のコードを 使う事があります。

これも、ASCII コードの　00h～1Fh 内に ありま

す。　ASCII コード表には　Xon、Xoff では　記

載されていません。　Xon が DC1 で、Xoff が

DC3のようです。

　で、何故　制御コードの話をしたかというと、

データ通信を行う場合 データを 伝送するのが

主な目的ですが、伝送を行う都合で　制御コー

ドも　場合により必要になる。　ということです。

　通常は、テキストで　データ転送を行う事が　

多いのですが、長くても 数mの近距離で伝送

効率を 上げるため 独自仕様で バイナリデー

タを　送る場合もあるようです。　

　その場合、一つ問題があり、データと 制御コー

ドの区別が　難しくなります。　何故なら　バイナ

リデータは 00h～ FFh まで全ての値を取ります。

　よって単純にデータか　制御コードかの　区別

が　出来なくなるということです

　一般に　それを　回避するため　バイナリデータ

の場合は　事前に決められた固定長で バイナリ

データを 転送します。 それでも送受信の シーケ

ンスがずれるとまずいので、バイナリデータの前

と　バイナリデータの後ろに　決められたコードを

付ける事により、前後のコードが決められたコー

ドと 一致した事により　正常にバイナリデータを

受信したという判断を 行う事になります。

　あと データは長くなりますが　バイナリデータを

16進文字列データとして　送る方法もあります。

俗にいう　ヘキサファイルです。

マイコンから、パソコンのテラタームに　マイコ

ンの動作確認のため、文字列を表示するので

あれば、ASCII 文字列と最後に　CrLf の付い

た文字列を　送るだけで十分な気がします。

　マイコンと　パソコンの プログラム、あるいは

複数のマイコン間にて　データ転送を行う場合

は、最低限　ACK、NAK ぐらいは必要と思いま

す。

　ちょっと制御コードの話で、長くなりましたね。

本題に入ります。　まず、今回のサブルーチン

のソースファイルの構成について説明します。

　次のページに　全体のソースファイル構成を

描きます。

H8_IOCS関数の ファイル構成

H8_300H_iocs.h

string_sub.h

int_proc_data.h

H8_ei_di.src

H8_sci_sub.src

intprg.c (追加)

H8_base.c

H8_1ms_timer.c

H8_sci.c

IOCS_sci_print.c

string_sub.c

Vect 24-IMIA0と Vect 53-SCI0
Vect 57-SCI1 割込み処理追加

1ms単位インタバルタイマ処理

CPU 周辺 基本処理

シリアル通信 低レベル処理

シリアル通信 文字列送信処理

文字列編集処理

が　割り込み処置関連

が　アセンブラソース

が　C ソース

が　C ヘッダーファイル

メインのヘッダ
ファイル

　このファイル群のなかで、上の

H8_300H_iocs.hは 文字列編集処理

以外の 全ての関数プロトタイプ宣

言を行っているファイルです。　次

ページから、内容を お見せします。
文字列編集処理
ヘッダファイル

H8_300H_iocs.h　IOCS関数の宣言ファイル

// CPU周辺　基本機能（ H8_base.c , H8_ei_di.src ） (1/5)
// ---
char get_cpu_mode(void); // CPU Mode取り出し（有効なのは 最下位 8bit）
void enable_interrupt(void); // 割り込み許可 (H8_ei_di.src)
void disable_interrupt(void); // 割り込み禁止 (H8_ei_di.src)
void soft_reset(void); // ソフトによる CPUリセット
void sleep_func(void); // CPU スリープに移行させる

// 1ms_tamer処理（ H8_1ms_timer.c ）
// ---
void wait_ms(int n); // ソフトによる 1ms単位　時間待ち処理
void init_1ms_timer(void); // 1ms インターバルタイマー初期化
_UWORD get_counter_1m(void); // 1msフリーランカウンタ読み出し
void set_timer_1m1(_UWORD n); // 1msタイマー１初期値設定
_UWORD get_timer_1m1(void); // 1msタイマー１現在値読み出し
void set_timer_1m2(_UWORD n); // 1msタイマー２初期値設定
_UWORD get_timer_1m2(void); // 1msタイマー２現在値読み出し
void set_timer_1m3(_UWORD n); // 1msタイマー３初期値設定
_UWORD get_timer_1m3(void); // 1msタイマー３現在値読み出し

void set_timer_1m4(_UWORD n); // 1msタイマー４初期値設定 (2/5)
_UWORD get_timer_1m4(void); // 1msタイマー４現在値読み出し

// シリアル通信基本処理（ H8_sci.c ）
// --
int open_sci_0(_UWORD bps, char *fmt); // SCI.0 オープン処理
void close_sci_0(void); // SCI.0 クローズ処理
void send_sci_0(char dt); // SCI.0 1byte 送信
int get_ring0_cnt(void); // 受信用リングバッファ0　データ格納数 取り出し
int get_ring0_data(void); // SCI0 リング格納データ 1byte 取り出し

int open_sci_1(_UWORD bps, char *fmt); // SCI.1 オープン処理
void close_sci_1(void); // SCI.1 クローズ処理
void send_sci_1(char dt); // SCI.1 1byte 送信
int get_ring1_cnt(void); // 受信用リングバッファ1　データ格納数 取り出し
int get_ring1_data(void); // SCI1 リング格納データ 1byte 取り出し

// シリアル通信基本サブ処理（ H8_sci_sub.src ）
// --
void init_sci0_sub(void); // SCI0 初期化の 一部分
void send_sci0_check(void); // SCI0 1byte 送信時の　レディ確認

void init_sci1_sub(void); // SCI1 初期化の 一部分 (3/5)
void send_sci1_check(void); // SCI1　1byte 送信時の レディ確認

// シリアル通信 文字列 送信処理（ IOCS_sci_print.c ）
// ---
// ★　SCIチャネル 0 側：
void sci_prin_space_0(int n); // スペースコード出力
void sci_beep_0(void); // ビープ音を 端末側で鳴らす
void sci_put_crlf_0(void); // 改行コード出力
void sci_prin_0(char *tx); // 文字列のみの出力
void sci_print_0(char *tx); // 文字列 + CrLf 出力
void sci_put_bin_0(unsigned char *buf, int cnt); // バイナリデータの出力
void sci_prin_ascii_0(char *asc, int len); // ASCII文字以外は '.'に置き換え出力
void sci_prin_ascii_16_0(char *asc, int len); // 16文字出力 ASCII文字以外は '.'に置換え出力

void sci_prin_byte_hex1_0(unsigned char c); // 1byteデータ 下位 4bit: 16進文字 1文字出力
void sci_prin_byte_hex2_0(unsigned char c); // 1byteデータ: 16進文字列 2文字出力
void sci_prin_byte_bcd2_0(unsigned char c); // 1byteデータ: BCD文字列 2文字出力
void sci_prin_word_hex4_0(unsigned int dt); // 1Wordデータ: 16進文字列 4文字出力
void sci_prin_dword_hex6_0(unsigned long dt); // Dwordデータ: 16進文字列 6文字出力
void sci_prin_dword_hex8_0(unsigned long dt); // Dwordデータ: 16進文字列 8文字出力
void sci_prin_byte_dec_0(unsigned char dat); // byteデータ：10進数 3桁 文字列出力

void sci_prin_word_dec_0(int dat, _UBYTE sw); // Wordデータ：10進数 文字列出力 (4/5)
void sci_prin_long_dec_0(long dat, _UBYTE sw); // longデータ：10進数 文字列出力
void sci_prin_byte_bit8_0(_UBYTE dt); // byteデータ --> 2進数 4bit+' '+4bit出力
int sci_recv_wait_0(void); // １文字 受信待ち
int sci_txt_input_0(char *ttl, char txt[], int len); // 文字列の入力処理
// ---
// ★　SCIチャネル 1 側：
void sci_prin_space_1(int n); // スペースコード出力
void sci_beep_1(void); // ビープ音を 端末側で鳴らす
void sci_put_crlf_1(void); // 改行コード出力
void sci_prin_1(char *tx); // 文字列のみの出力
void sci_print_1(char *tx); // 文字列 + CrLf 出力
void sci_put_bin_1(unsigned char *buf, int cnt); // バイナリデータの出力
void sci_prin_ascii_1(char *asc, int len); 　　// ASCII文字以外は '.'に置き換え出力
void sci_prin_ascii_16_1(char *asc, int len); // 16文字出力 ASCII文字以外は '.'に置き換え出力

void sci_prin_byte_hex1_1(unsigned char c); // 1byteデータ下位 4bit: 16進文字 1文字出力
void sci_prin_byte_hex2_1(unsigned char c); // 1byteデータ: 16進文字列 2文字出力
void sci_prin_byte_bcd2_1(unsigned char c); // 1byteデータ: BCD文字列 2文字出力
void sci_prin_word_hex4_1(unsigned int dt); 　// 1Wordデータ: 16進文字列 4文字出力
void sci_prin_dword_hex6_1(unsigned long dt); // Dwordデータ: 16進文字列 6文字出力
void sci_prin_dword_hex8_1(unsigned long dt); // Dwordデータ: 16進文字列 8文字出力

(5/5)
void sci_prin_byte_dec_1(unsigned char dat); // byteデータ：10進数 3桁 文字列出力
void sci_prin_word_dec_1(int dat, _UBYTE sw); // Wordデータ：10進数 文字列出力
void sci_prin_long_dec_1(long dat, _UBYTE sw); // longデータ：10進数 文字列出力
void sci_prin_byte_bit8_1(_UBYTE dt); // byteデータ --> 2進数 4bit+' '+4bit出力
int sci_recv_wait_1(void); // １文字 受信待ち
int sci_txt_input_1(char *ttl, char txt[], int len); // 文字列の入力処理

　以上が、現時点での H8_300H_iocs.h の　内容です。

今後、H8/3069基板裏側に実装されている　２MBの D-RAM アクセスや、

I2Cのアクセス関数を　追加していく予定です。

　ちなみに、H8マイコンは　I2Cインタフェースの周辺回路を 持ちません。

よって I/Oポートを 細かく Hi、Low させるソフトウェアで 実現します。 そ

れと、H8マイコンは　5Vで動作しますが、I2Cデバイスは 3.3Vで動作する

デバイスも多いです。 よって信号線の 電圧変換も　必要となります。

で、今回は、手始めに intprg.c の　追加割り込み処理の説明と　使用する

構造体データの型宣言をしている　int_proc_data.h の説明を 行います。

　それと もう一つ　H8_sci.c の説明を行います。

int_proc_data.h　構造体データ型宣言ファイル

#define SBUF_SIZ 256 // シリアル通信リングサイズ

typedef struct { // タイマー、カウンター構造体
_UWORD ctr; // フリーラン カウンタ
_UWORD tm1; // 1ms タイマー変数.1
_UWORD tm2; // 1ms タイマー変数.2
_UWORD tm3; // 1ms タイマー変数.3
_UWORD tm4; // 1ms タイマー変数.4

} TCU160_CTR;

typedef struct { // シリアル通信用リングバッファ
_UBYTE buf[SBUF_SIZ]; // リングバッファ
_UBYTE wp; // 書き込み位置ポインタ
_UBYTE rp; // 読み出し位置ポインタ
_UBYTE len; // 書き込みデータ長(byte)

} SERIAL_RING;

　一番上の　SBUF_SIZは シリアル

通信 受信用のリングバッファの最

大格納文字数です。　受信は、相手

の都合で いつ送ってくるか 分から

ないので、送られてきた複数文字を

リングバッファ内に蓄えておきます。

TCU160_CTRは 1msのインターバ

ルタイマ用のカウンタ変数 ５個で

す。　ｃｔｒ が　1ms毎に 常時インクリ

メントするカウンタ変数です。

tm1～tm4 は　通常 0 では カウント

動作を行いません。　値がセットさ

れたとき、値が 0 でなければ、

1ms毎に デクリメントを 行います。

　SERIAL_RING は、シリアルデータ受信用のリングバッファです。 受信割り込みで 受信データを 取

り込み リングバッファの wpポインタで指す位置に　データを書き込み、wpと lenを +1 します。 リング

からデータを取り出す時は、len が 1以上である事を確認して rpで指す位置の リングデータを取り出

し rp を　+1して、lenが　0 以上であれば len -1 を　行います。　

intprg.c 割り込み処理関数テーブルファイル

 (1/4)
#include "IntProc_data.h" // 割り込み処理内で使用する構造体データ

//** 内部データ領域
// --
 volatile TCU160_CTR Tcu_cn; // TCU16_0 カウンタ変数
 volatile SERIAL_RING Sr0, Sr1; // 受信用リングバッファ 0と 1

//==
#pragma section IntPRG
// vector 1 Reserved

　intprg.cは 標準で 自動

生成されるファイルですが

 このソースは 何もしない

と 全てのベクター番号の

空の割り込み処理で構成

されています。

　割り込み処理を記述す

る場合は、空の割り込み

処理の中にコードを入れ

て行きます。　 　　

　赤四角で囲った部分は、前のページで　型宣言した 構造体の 変数を用意してます。

Tcu_cn は　インターバルタイマ用の カウント変数です。

Sr0、Sr1 は　シリアル通信周辺回路の SCI0、SCI1用の　リングバッファ構造体です。　

 (2/4)
//__interrupt(vect=24) void INT_IMIA0(void) {/* sleep(); */}
__interrupt(vect=24) void INT_IMIA0(void)
{

ITU.TISRA.BIT.IMFA0 = 0; // 16bitタイマー IMFA0 クリア
Tcu_cn.ctr++;
if(Tcu_cn.tm1 > 0) Tcu_cn.tm1--;
if(Tcu_cn.tm2 > 0) Tcu_cn.tm2--;
if(Tcu_cn.tm3 > 0) Tcu_cn.tm3--;
if(Tcu_cn.tm4 > 0) Tcu_cn.tm4--;

}

　ベクター 24 は 16bitタイマー周辺

回路 0 の　ベクターです。

　元々は　コメントにした 赤の上の

一行です。 右の {/* sleep(); */} を

下に降ろして、/* sleep(); */ の　と

ころを　青の６行に 変更した。

という事です。　

　ITU.TISRA.BIT.IMFA0 = 0; は　右のコメントの通りですが、ITUというタイマー周辺回路の　

IMFA0 というフラグを クリアしないと　次の割り込みが正常に受け付けられなくなるので、

ハード的な　お約束と思って下さい。　Tcu_cn.ctr++; は　フリーランカウンタを インクリメントして

います。　その下の４行は　Tcu_cn.tm1 ～ Tcu_cn.tm4 にて　同様の処理を行っていますが

例として　tm1 で 説明すると　tm1 が 0 より大きければ　tm1を デクリメントする という事です。

　このタイマー処理は　初期化で　1ms周期で　割り込みが　継続してかかるようにしています。

よって、tm1 は　1ms毎に　カウントダウンされます。　tm1に　1000 を　セットすれば、１秒後に

tm1は　0 に　なります。

 (3/4)
__interrupt(vect=53) void INT_RXI0(void)
{

//*** SCI0の データ受信割り込み ***
volatile _UBYTE dt, sts;

SCI0.SCR.BIT.RIE = 0; // SCI0 一旦 受信割り込み 停止
dt = SCI0.RDR; // 受信データを取り出す
sts = SCI0.SSR.BYTE; // ダミー読み出し
SCI0.SSR.BIT.RDRF = 0; // 受信フラグを クリア

Sr0.buf[Sr0.wp] = dt; // 受信データを リングバッファに書き込む
if(Sr0.len < SBUF_SIZ -1) // 書き込みデータ数 満杯より小さいか ?
{

Sr0.wp++; //　Write Pointer 更新 255の次 0に 折り返す
Sr0.len++; // 格納個数 +1 更新

}
SCI0.SCR.BIT.RIE = 1; // SCI0 受信割り込み 再開

}

 (4/4)
__interrupt(vect=57) void INT_RXI1(void)
{

//*** SCI1の データ受信割り込み ***
volatile _UBYTE dt, sts;

SCI1.SCR.BIT.RIE = 0; // SCI1 一旦 受信割り込み 停止
dt = SCI1.RDR; // 受信データを取り出す
sts = SCI1.SSR.BYTE; // ダミー読み出し
SCI1.SSR.BIT.RDRF = 0; // 受信フラグを クリア

Sr1.buf[Sr1.wp] = dt; // 受信データを リングバッファに書き込む
if(Sr1.len < SBUF_SIZ -1) // 書き込みデータ数 満杯より小さいか ?
{

Sr1.wp++; //　Write Pointer 更新 255の次 0に 折り返す
Sr1.len++; // 格納個数 +1 更新

}
SCI1.SCR.BIT.RIE = 1; // SCI1 受信割り込み 再開

}

// シリアル通信基本処理（ H8_sci.c ）
int open_sci_0(_UWORD bps, char *fmt); // SCI.0 オープン処理
void close_sci_0(void); // SCI.0 クローズ処理
void send_sci_0(char dt); // SCI.0 1 _UBYTE 送信
int get_ring0_cnt(void); // 受信用リングバッファ0　データ格納数 取り出し
int get_ring0_data(void); // SCI0 リング格納データ 1_UBYTE 取り出し

int open_sci_1(_UWORD bps, char *fmt); // SCI.1 オープン処理
void close_sci_1(void); // SCI.1 クローズ処理
void send_sci_1(char dt); // SCI.1 1 _UBYTE 送信
int get_ring1_cnt(void); // 受信用リングバッファ1 データ格納数 取り出し
int get_ring1_data(void); // SCI1 リング格納データ 1_UBYTE 取り出し

　アプリ側から　呼び出すシリアル通信の　基本関数です。　sci_0 と　sci_1 は　同様の使い方なので

sci_0 で　説明します。　まず　int open_sci_0(_UWORD bps, char *fmt); ですが　引数 bps ですが

ボーレイトです。　設定範囲は　150、300、600、1200、2400、4800、9600、19200、38400 です。

プリスケーラの分解能の関係で 最高速度 38400 です。　引数　*fmt は　３文字構成で　１文字目が パリティ

で　"N"、"E"、"O" です。　２文字目が データ長で "7"、"8"です。 ３文字目が　Stop bit長で "1"、"2" です。

よく使用するのは　"N81" Non Parity、8bit Data Length、1stop bit です。　send_sci_0関数の引数は 送信文字

です。　　get_ring0_cnt関数の関数値は　0 ～ 255 です。　get_ring0_data関数の関数値は データが無い時は

 -1で、データがある時はそのデータの値 0 ～ 255 を　返します。　H8_sci.c内の 関数の頭にも　コメントで

引数の説明を　付けています。

今回、新たに分かった事

　今まで、ルネサスの開発環境は　本来有償の

開発環境であって、評価版の開発環境は、いく

つかの制約があり 標準的なライブラリの提供

は　外されている。 と、思い込んで いました。

　評価版に明らかに存在する制約は　リンク後

の　実行プログラムサイズが　64Kバイト以内で

ある事。 です。 その他 製品版には　あるけど

評価版で外されている機能が あるかもしれま

せん。　遥か昔の環境は　制約が多かった事も

あり、そう思い込んでいたのかも しれません。

　そう思い込んでいたので、文字列編集のよう

な機能も、自前で用意する必要がある。　と、

思い 自作していました。　

　それが、もしかして　sprintf 関数が使えるので

は、ないかと　急に思い立って　試してみたら

sprintf 関数が使えました。　条件としては、ソー

ス先頭で　#include <stdio.h>　を 入れる事です。

　で、もう一つ　sprintf 関数にて　浮動小数点

データも使える事を　確認しました。　但し、4byte

浮動小数点の　float 変数のみの サポートです。

　で、開発途中で　sprintf関数や float変数を　使

い始めると　ビルドにて 一旦、オブジェクトファイ

ルが　全て削除されます。　これは、浮動小数点

の必要が無い場合は、整数のみの演算ライブラ

リが リンクされて小さい実行形式が作られます。

浮動小数点を扱う事になる場合は、整数と、浮動

小数点の演算ライブラリが　リンクされるようで一

旦、オブジェクトファイルを　消す必要があるので

しょう。 そして実行形式のサイズも 大きいです。

　

　私が、小さいプログラムでテストした時は

整数だけのプログラムでは　実行形式が　9K

byteでしたが、整数と実数のプログラムでは

30Kbyte でした。　約 3倍に なります。

　でも、64Kbyte以内であれば、開発出来るの

で、まだ 34Kbyteぐらいは　余裕が あります。

　巨大な実行形式は　作れませんが　sprintf

関数は、積極的に使ってもいいと　思います。

　それと、H８マイコンには　浮動小数点演算コ

プロセッサが　ありません。　ソフトで浮動小数

点演算を　行います。

　ソフトで　浮動小数点演算を　行うと、浮動小

数点演算コプロセッサを　使う時に比べ 演算

処理速度が 1/20 ～ 1/30 ぐらいに落ちます。

　遥か昔、初期の PC-9801　16bitで、 浮動小数点

演算コプロセッサ i8087を 抜き差しして　実験しまし

た。

　浮動小数点演算が 出来れば　便利な場合も　

ありますが、H8は　基本 16bitマイコンなので

浮動小数点の 演算処理は、遅いです。

　あと、指数関数、対数関数、三角関数 などの　

超越関数は 使えません。　あくまで、加減乗除だ

けのようです。　

　あと、floatの浮動小数点演算では 有効数字は

10進数で　6桁ぐらいです。

　浮動小数点が使えても　超越関数が 使えない

のであれば、魅力半減という感じですね。

　以上でした。

　あと、簡単な文字表示の実験動画を　お見せ

します。

