
R8Cと H8 マイコン間のプログラム移植の 注意点

　今回は、前回の動画で発覚した現象で、H8マ

イコンの メモリアドレス表示用で　用意してい

た 3byte整数の 16進文字列表示処理にて、

最初、16行全てが　000000h を 表示していまし

た。 テラタームに表示した画像を　お見せしま

す。

　何故、アドレス表示が、全て　00 00 00hに な

るのか　最初、 全く見当が 付きませんでした。

　で、longの値を 16進 6桁で表示しているので

試しに、16進 8桁で表示すると　原因が　見え

てきました。

察しのいい人なら　分かると思います。

　では　アドレス表示を　８桁で表示した、テラ

タームの画面をお見せします。

ビッグエンディアンと　リトルエンディアン

まず、ビッグエンディアンは　メモリの先頭から

上位byteから順に、下位バイトと並びます。

上位byte

下位byte

Address

0000h

0001h

最上位byte

中上位byte

Address

0000h

0001h

中下位byte

最下位byte

0002h

0003h

2byte整数 4byte整数

逆に、リトルエンディアンは　メモリの先頭から

下位byteから順に、上位バイトと並びます。

上位byte

下位byte

Address

0000h

0001h

最上位byte

中上位byte

Address

0000h

0001h 中下位byte

最下位byte

0002h

0003h

2byte整数 4byte整数

　何故このようなバイト単位の並びの違いが出来

たのかは、よく分かりませんが、パソコンが出てく

る前は、無かったと思います。　

　パソコン以前は、メインフレームコンピュータ、ミ

ニコンが　使用されていました。　メインフレーム

は触った事はありませんが、20代半ば頃に　ミニ

コンは　触ってました。　では、ミニコンは　ビッグ

エンディアンか　リトルエンディアンかというと、ど

ちらでもありません。

　アドレスの単位が　byteではなくて、wordなので

す。　だから、ミニコンで　メモリ容量　64Kというと

64Kbyteではなくて、64Kwordなのです。　１回に

アクセスする単位が　wordしかないのです。

　よって　ビッグエンディアン、リトルエンディアン

という概念は　ありませんでした。

　よって、8bitマイコンの出現により　8bitのデー

タバス幅になり、アドレス値で 指定するデータ

幅も byte単位になったと思われます。　インテ

ルの　i8080の前に　i4004、i8008というCPUが　

ありました。　さすがに i8080以前のCPUは　

使った事は ありませんが、コントローラ的なマ

イコンだったようで、2byte整数を扱う機能が　

無かったと思われます。　それと　インテルの

CPU戦略というか、過去の互換性を重視してい

たように思います。 その関係で、1byte 整数の

データを　出力した後に　追加的に　上位byte

を　付け加えた事が　リトルエンディアンの始ま

りではないかと思います。

　では、ビッグエンディアンは　どのように出て

来たのかと いうと、パソコンでデータ入力した

データを　メインフレームや ミニコンに渡すとき

何故かビッグエンディアンで　渡す事に なって

　　　

いました。　メインフレーム等に　データを渡す

時は　ビッグエンディアンの方が　都合がいい

ようです。　私も遥か昔　メインフレームを使用

している事業所に　データを送る時、上下バイ

トを並べ直してから　送った記憶があります。

　今は、パソコンが　メインになって来ているの

で、リトルエンディアンが　使われる事が　多く

なってきていると思います。

マイコンでは、パソコンに使用される インテル

の CPUが　リトルエンディアンの代表格でしょ

う。　MC68000、H8は　ビッグエンディアンで、

R8Cは リトルエンディアンです。

　MIPS、ARM、SH、RXは　リトルエンディアン、

ビッグエンディアンの 両方が　設定できます。

　バイエンディアンというようです。　RXマイコン

は　デフォルト設定で　 リトルエンディアンだっ

たと思います。

ビッグエンディアンのCPUと　リトル
エンディアンのCPU　ソフトでの対応

　前回、R8Cマイコンから　H8マイコンに　持っ

て来て　問題が　起こったソースですが、文字

列変換処理の　string_sub.c です。

　最初、R8Cの　I/Oポートも　内蔵周辺機器も

全くアクセスしてないし、intも 同じ 16bitなので

移植性は　あるだろうと思い　H8に　持ってきま

した。 一つだけ、バイトオーダーというか

ビッグエンディアンと　リトルエンディアンは　見

落していました。

　で、今回影響を受けたのは、整数データを　

16進文字列に変換する処理です。 この処理は

①　shortの 2byte整数を 4桁の 16進文字列に

　　変換する処理

②　long の 4byte整数の 下位 3byteを　6桁の

　　16進文字列に変換する処理

　

③　long の 4byte整数を　8桁の　16進文字列に

変換する処理

の、３つです。　それと、16進文字列から整数に

に変換する、逆変換処理も　３つ あります。

よって、今回　計　６個の　変換関数に　処置を

行いました。

　次のページから、任意バイト位置データを　取り

出すデータ型宣言と それを利用した整数から

Hex文字列変換関数の 変更箇所を説明します。

typedef struct {
 _UBYTE b0, b1, b2, b3; // Byte *4
} BYTE_4;

typedef struct {
 _UWORD w0, w1; // Word *2
} WORD_2;

typedef union {
 BYTE_4 b; // Byte *4
 WORD_2 w; // Word *2
 _UDWORD dw; // DWord *1
} TYP_CHG4;

　今回のプログラムにて使用する long変数内の

任意位置の byteを取り出すために 以下の 構造

体 struct と 共用体 union の変数を使用します。

　上記の　データ型宣言で　共用体 unionが　馴

染みの薄い宣言と思われますので、説明してお

きます。　

左の TYP_CHG4は　union 共用体です。

左の TYP_CHG4では、bと　Wと　dwの３つのメン

バー変数を 宣言しています。 で、構造体と　大き

く異なるのは、この３つのメンバー変数が、３つと

も　同じアドレスに 配置される事です。　よって

実態が １つの変数に　３つの 型と名前を付けて

いるという事です。　こうする事により、longの値

を　dwに代入して、そのうちの先頭バイトを取り

出す場合は　b.b0 で アクセスすれば 先頭アドレ

スのバイト値を取り出せます。 b.b1 で アクセス

すれば 先頭アドレス+1 の バイト値を取り出せま

す。　つまりバイト単位で 任意位置のバイト値を

 取り出せる事になります。

b.b0

b.b1

b.b2

b.b3

w.w0

w.w1

dw

Adddress

0000h

0001h

0002h

0003h

16進数表示を行うやり方

は、バイト単位で データ

を取り出し16進数 2桁を

表示しています。

 左の上側が　リトルエン

ディアン仕様です。

　左の下側が　ビッグエ

ンディアン仕様です。

b.b0 ～ b.b3 の並びが

上側と 下側で 逆になっ

ているのが、分かると思

います。 これで リトルエ

ンディアン仕様とビッグエ

ンディアン仕様のバイト

位置の取り出し方が 分

かったと思います。

 *tx = bin_hex1(tc.b.b3 >> 4); tx++; // リトルエンディアン仕様
 *tx = bin_hex1(tc.b.b3); tx++; // long -> 16進 8文字表示
 *tx = bin_hex1(tc.b.b2 >> 4); tx++;
 *tx = bin_hex1(tc.b.b2); tx++;
 *tx = bin_hex1(tc.b.b1 >> 4); tx++;
 *tx = bin_hex1(tc.b.b1); tx++;
 *tx = bin_hex1(tc.b.b0 >> 4); tx++;
 *tx = bin_hex1(tc.b.b0); tx++;

 *tx = bin_hex1(tc.b.b0 >> 4); tx++; // ビッグエンディアン仕様
 *tx = bin_hex1(tc.b.b0); tx++; // long -> 16進 8文字表示
 *tx = bin_hex1(tc.b.b1 >> 4); tx++;
 *tx = bin_hex1(tc.b.b1); tx++;
 *tx = bin_hex1(tc.b.b2 >> 4); tx++;
 *tx = bin_hex1(tc.b.b2); tx++;
 *tx = bin_hex1(tc.b.b3 >> 4); tx++;
 *tx = bin_hex1(tc.b.b3); tx++;

　最後に、１本のソースにて　ビッグエンディアンと　リトルエンディアンの　両方の CPUに対

応するための　コーディングを紹介します。　ソース先頭で　以下の記述を

入れます。　下のコメントの通りですが、#define LITTLE_EN を　宣言するか しないかで

設定します。

// ★　使用するCPUの　バイトオーダーの切り替え
// ==
// リトルエンディアンの場合：以下の #define LITTLE_EN を 宣言する
// ビッグエンディアンの場合：以下の #define LITTLE_EN を コメントに する
// --
#define LITTLE_EN // ＜ 現在 リトルエンディアン ＞
// ==

　今回、整数値 <-> Hex文字列変換箇所は　ソース内に　６ヶ所あります。

６か所とも表示すると長くなるので、先ほど　long -> 16進 8文字表示のソースを

表示したので、次ページでは、１ヶ所　long -> 16進 6文字表示のソースを

どのように　バイトオーダーを切り替えているかを　表示します。

　

 tc.dw = dw;
//*** ★ バイトオーダー切り替え ② ***
#ifdef LITTLE_EN
 *tx = bin_hex1(tc.b.b2 >> 4); tx++; // リトルエンディアン仕様
 *tx = bin_hex1(tc.b.b2); tx++;
 *tx = bin_hex1(tc.b.b1 >> 4); tx++;
 *tx = bin_hex1(tc.b.b1); tx++;
 *tx = bin_hex1(tc.b.b0 >> 4); tx++;
 *tx = bin_hex1(tc.b.b0); tx++;
#else
 *tx = bin_hex1(tc.b.b1 >> 4); tx++; // ビッグエンディアン仕様
 *tx = bin_hex1(tc.b.b1); tx++;
 *tx = bin_hex1(tc.b.b2 >> 4); tx++;
 *tx = bin_hex1(tc.b.b2); tx++;
 *tx = bin_hex1(tc.b.b3 >> 4); tx++;
 *tx = bin_hex1(tc.b.b3); tx++;
#endif
 *tx = NULL;

バイトオーダーの切り替えは、

#ifdef LITTLE_EN

#else

#endif

の コンパイル制御にて　行い

ます。

これは、LITTLE_ENが　宣言さ

れていると、リトルエンディア

ンのコードのみ生成されます。

　逆に　LITTLE_ENが　宣言さ

れてないと、ビッグエンディア

ンのコードのみ生成されます。

