
秋月電子H8/3069F基板実装
D-RAMのアクセス

　今回は、秋月電子 H8/3069F USBホスト基板

裏側に実装されている 2Mbyte D-RAMの アク

セスの実験を行います。　以下の画像の黄色

の四角で囲ったTOSHIBAの LSI が　今回の

D-RAMです。　データバスは　8bitで　H8マイコ

ンの　D15 ～ D8 のデータバスに接続されて　

います。　ちなみに　RAMは　基本 S-RAMと

D-RAMの ２種類が あります。 S-RAMは 1bitの

データを記憶するのに　フリップフロップ回路を　

使用しています。 フリップフロップ回路は トラン

ジスタを　5個か 6個使用するようで、1bit を構成

する用途では、ややトランジスタ数を　多く消費す

るので、記憶密度を上げる事が出来ません。　そ

れに対し　D-RAMは　半導体中に　小容量のコ

ンデンサを構成して 1bitの 構成部品を少なくし

て　記憶密度を上げています。

　但し、コンデンサなので　そのまま放置しておく

と、電荷が自然放電して、Hi か Low か 分からな

くなります。　その関係で　周期的にリフレッシュ

動作という　Hi か Low かが、ハッキリ分かるよう

にする処理を 行います。　これにより　中途半端

な電位に ならないようにしています。　その関係

で　外付けで リフレッシュ回路が必要です。

　今回は、H8/3069Fマイコン内部に　D-RAM

のリフレッシュコントローラが　組み込まれてい

ます。　よって別途 リフレッシュコントローラは

必要ありません。　但し　リフレッシュ動作は、

D-RAM内の多数のコンデンサの充電を 瞬時

に行うので　やや電力を消費します。

　そして、そのリフレッシュサイクルが　ミリ秒ぐ

らいの周期で　割り込んでくるので　D-RAMの

メモリアクセスは　遅くなります。

　また、CPUが　D-RAMを　アクセスする時は、

間にバスコントローラが 入って D-RAM特有の

アドレス指定である　カラムと ローの 2回に分

けて書き込むので　この動作によっても　アク

セスタイムが　遅くなります。

　D-RAMの短所ばかり、書きましたが、D-RAM

の長所は　ワンチップでの　メモリ容量が　大き

い事です。　よってメモリ容量が大きいので、他

の短所には　目をつぶってくれ。という事なので

しょう。

　因みに　S-RAMの短所は　単位面積当たり

の記憶容量が　D-RAMと比べ　小さい事です。

　S-RAMの長所は　リフレッシュの必要が無い

ので、低消費電力、高速アクセスが可能です。

　そして、D-RAMも　S-RAMも　揮発性のメモリ

ですが、S-RAMは CPUが　アクセスしなけれ

ば、消費電力は極めて小さいので　電池等で

約 3V程度で 電源バックアップが 出来ます。

　という事で、D-RAMと　S-RAMの 違いの

説明でした。

AE-3069USB基板のメモリマップ

AE-3069USB基板のメモリマップを示し、基板裏側に実装

される外付け D-RAMの　アドレス範囲を　確認します。

　右のメモリマップを見れば分かりますが、D-RAMの

配置アドレスは、400000h ～ 5FFFFFh です。　CS2の

領域を　フルに　使用してます。　ちなみに　CS0～CS7は

7種類の　チップセレクト信号と　考えて下さい。

　それと、先ほども書きましたが 使用されるD-RAMの

データバス幅は 8bitです。 よって、一回のアクセスで　読

み書き出来るデータの 幅は 8bitのみです。　16bit整数、

または　32bit整数を　読み書きする事は　可能ですが、

16bit整数の場合 ２回連続アクセス、 32bit整数の場合、４

回連続アクセスを行います。 よって、その分 遅くなるとい

う事です。　内蔵の RAMメモリと比べると　遅いです。　

内臓 ROM 512 Kbyte
内容

000000H
080000H

CS0

CS

CS1

200000H
USBインタフェース

400000H

CS2
外付け D-RAM

2 Mbyte
600000H

CS3

CS4

CS5

CS6

CS7
内臓RAM 16Kbyte

800000H

A00000H

C00000H

E00000H

FFBF20H
FFFF1FH

メモリマップ

AE-3069USB基板の 回路図

　回路図は、細かくて詳細を

見るのは無理と思います。

　大雑把に右下の　赤枠内

が　D-RAMです。

　秋月電子の基板を購入す

ると　説明書に回路図も　記

載されてます。 その印刷物

を　画像としてスキャナで取

り込んだ事もあり　荒い画像

となっています。

　バス線は　２つの 40ピンコ

ネクタで、外部に引き出せる

ので、他の 外部素子も イン

タフェース仕様が合えば　接

続する事も可能と思います。

D-RAM、ソフトからのアクセス

AE-3069USB基板裏面の D-RAMですが、今度

は　ソフトからの　アクセスについて説明します

。　まず、初期化が 必要です。　

　幸い、秋月の基板キットの説明書に D-RAM

を　使用する上で　必要となる　I/O レジスタに

コマンドを出すシーケンスが書いてありました。

　右の　赤枠で　囲った部分です。

但し、Cのソースでは　ありませんので、移植時

ひと手間掛かります。

　初期化が、終われば通常のメモリとして

自由にアクセスできます。

　尚、右上の赤枠上の文言は　秋月電子基板

キットの説明書に　記載されていた文面です。

付属D-RAMの使い方

付属D-RAMは　モード５で 使用します。

電源ON直後の状態では、正しく D-RAMを　使う

事が 出来ません。 以下のように設定します。

　P1DDR、P2DDR、P8DDRは　HEWの　C上に

簡単に移植出来ると 思いますが、RTCOR、

RTMCSR、DRCRB、DRCRA は　ちょっと悩むと

思います。　参考にするのは　iodefine.h と

H8/3069の ハードウェアデータシートです。

次ページに　移植結果をお見せします。

 P1DDR = 0xFF; // P1 は　Address Bus A7 ～ A0
 P2DDR = 0xFF; // P2 は　address Bus A15 ～ A8　
 P8DDR = 0x1C; // P8.b2=CS2(D-RAMの区画)

 BSC.RTCOR = 0x0A; // リフレッシュタイム コンスタント レジスタ
 BSC.RTMCSR.BYTE = 0x18;// リフレッシュタイマコントロール／ステータスレジスタ
 BSC.DRCRB.BYTE = 0x90; // DRAMコントロールレジスタB
 BSC.DRCRA.BYTE = 0x30; // DRAMコントロールレジスタA

 wait_ms(10); // 約 10ms D-RAM 安定時間待ち

　上のソースに　BSC という名称が出てますが　H8/3069の　バスコントローラの事です。

以下に、ハードウェアデータシートに書かれている概要を　転載しました。

本 LS I は バスコントローラ（ BSC ）を内蔵しており、外部アドレス空間を　8 つのエリア

に分割して管理します。　各エリアでは、バス幅、アクセスステート数などのバス仕様を

独立に 設定することが可能であり、複数のメモリを　容易に接続することができます。

また、バスコントローラは　バス調停権機能を持っており、内部バスマスタである CPU、

DMAコントローラ（DMAC）及び　DRAM インタフェースの　動作を制御すると共に

外部に　バス権を解放することが できます。　　との事です。

D-RAM、ソフトからのアクセス

　今回、用意した関数は　H8_300H_iocs.hに　

プロトタイプ宣言を　行っています。

// D-RAM アドレス値
// --
#define DRAM_TOP_ADR (volatile _UBYTE *)0x400000 // D-RAM 先頭アドレス
#define DRAM_BTM_ADR (volatile _UBYTE *)0x5FFFFF // D-RAM 最終アドレス
#define DRAM_BYTE_SIZE 0x200000 // D-RAMの メモリサイズ(byte)

～～～～～～～～～～～～～～（途中省略）～～～～～～～～～～～～～～～～～～

// ★ 秋月電子 AE-3069USB基板 実装 D-RAM アクセス処理（ dram_acc.c ）
// ---
short init_dram(void); // D-RAM初期化（ メモリゼロクリアも行う ）
void clear_dram(_UBYTE *adr, _UDWORD len); // D-RAM領域のゼロクリア(dram_sub.src)
void test_wr_dram(_UBYTE *adr, _UDWORD len); // 00h～FFhのテストデータを書き込む
_UBYTE *dump_page(_UBYTE *adr); // 16byte x 16行 ダンプ表示

H8_300H_iocs.h

D-RAMアドレス値は、H8_300H_iocs.h 先頭に　宣言しています。

D-RAMアクセス関数プロトタイプ宣言は　H8_300H_iocs.h 下部に　あります。

　今回は、関数の中身の細かい説明は省略します。

D-RAMの初期化処理の使い方の説明をします。

//**************************

//** D-RAM 初期化処理 **

//** -------------------- **

//** 関数値： 1 = 正常 **

//** 0 = 異常 **

//**************************

short init_dram(void)

関数値は、１であれば、正常（ D-RAMが正常に機能

している ）で、0 であれば、異常（ D-RAMが機能して

無い ）事を　意味します。 尚、正常であれば D-RAM

を 先頭 byte から 終端 byteまで ゼロクリアします。

D-RAM内容を　ゼロクリアする関数

; **

; ** D-RAM メモリクリア **

; ** ---------------------------------- **

; ** ER0 : 先頭アドレス（_UBYTE *adr ）**

; ** ER1 : カウンタ （ long len ） **

; ** 関数値：無し **

; **

 .export _clear_dram

_clear_dram:

　大容量のメモリを高速で ゼロクリアするために

アセンブラで　出来ています。　その関係で 引数１は

ER0 レジスタで　引数２は　ER1 レジスタとなります。

　C言語から　この関数を呼ぶ場合は　先頭の _ を

取り除いた関数名で 引数は　カッコ内の　_UBYTE

*adr と、 long　len の様に　呼び出して下さい。

D-RAM全体のゼロクリアは　init_dram関数で　行って

いるので　部分的な消去に 使用して下さい。

; ***

; ** D-RAM全エリアに テストデータを **

; ** 書き込み **

; ** テストデータは **

; ** 00h ～ FFを 繰り返し書き込み **

; ** ----------------------------------- **

; ** ER0 : 先頭アドレス（ _UBYTE *adr ）**

; ** ER1 : カウンタ（ long len ） **

; ** 関数値： 無し **

; ***

 .export _test_wr_dram

_test_wr_dram:

これも　アセンブラの関数です。

C言語からの呼び出し方は　前の関数と同じです。

指定されたアドレスから　lenの バイト数分

00h ～ FFh を　繰り返し書き込みます。

D-RAMの　テスト用の関数です。

//**

//** 16byte x 16行 ダンプ表示 **

//** ------------------------------------ **

//** adr : ダンプ表示したいデータの先頭 **

//** アドレス　　　　　　　　 **

//** 関数値： **

//** 引数 adr に 256 を 足した値です。 **

//** メモリアドレスを 連続的に ダンプし **

//** 続ける場合は、関数値を 次のダンプ **

//** 処理の引数として使用して下さい。 **

//**

_UBYTE *dump_page(_UBYTE *adr)

この関数は C で 出来ています。

指定された先頭アドレスから 256 byteのデータを

横 16byte分の HEX表示と 表示可能であれば

ASCII文字で 表示します。それを 16 行 縦に

表示して 計 256 byteの ダンプ表示を行います。

　目的のデータが　メモリの所定箇所に 正しく

入っているか、確認の用途で使用して下さい。

　まず最初に、init_dram関数を 呼び出して下さ

い。 通常の　データの書き込み読み出しは　ポ

インタ変数を使って行って下さい。

　D-RAMの先頭アドレスは、H8_300H_iocs.h 内の

先頭に宣言してある DRAM_TOP_ADR を 使用して

下さい。　例）2byte整数の場合：

 short *ptr;

 ptr = (short *)DRAM_TOP_ADR;

として下さい。

他に

DRAM_BTM_ADR // D-RAM 最終アドレス

DRAM_BYTE_SIZE // D-RAM全体のバイトサイズ

が、あります。

　では、D-RAM全領域に 00h ～ FFhのテスト

データを 書き込み、HEXダンプを行う実験を

行います。

