
秋月電子H8/3069F基板実装
D-RAMのアクセス

　今回は、秋月電子 H8/3069F USBホスト基板

裏側に実装されている 2Mbyte D-RAMの アク

セスの実験を行います。　以下の画像の黄色

の四角で囲ったTOSHIBAの LSI が　今回の

D-RAMです。　データバスは　8bitで　H8マイコ

ンの　D15 ～ D8 のデータバスに接続されて　

います。　ちなみに　RAMは　基本 S-RAMと

D-RAMの ２種類が あります。 S-RAMは 1bitの

データを記憶するのに　フリップフロップ回路を　

使用しています。 フリップフロップ回路は トラン

ジスタを　5個か 6個使用するようで、1bit を構成

する用途では、ややトランジスタ数を　多く消費す

るので、記憶密度を上げる事が出来ません。　そ

れに対し　D-RAMは　半導体中に　小容量のコ

ンデンサを構成して 1bitの 構成部品を少なくし

て　記憶密度を上げています。

　但し、コンデンサなので　そのまま放置しておく

と、電荷が自然放電して、Hi か Low か 分からな

くなります。　その関係で　周期的にリフレッシュ

動作という　Hi か Low かが、ハッキリ分かるよう

にする処理を 行います。　これにより　中途半端

な電位に ならないようにしています。　その関係

で　外付けで リフレッシュ回路が必要です。



　今回は、H8/3069Fマイコン内部に　D-RAM

のリフレッシュコントローラが　組み込まれてい

ます。　よって別途 リフレッシュコントローラは

必要ありません。　但し　リフレッシュ動作は、

D-RAM内の多数のコンデンサの充電を 瞬時

に行うので　やや電力を消費します。

　そして、そのリフレッシュサイクルが　ミリ秒ぐ

らいの周期で　割り込んでくるので　D-RAMの

メモリアクセスは　遅くなります。

　また、CPUが　D-RAMを　アクセスする時は、

間にバスコントローラが 入って D-RAM特有の

アドレス指定である　カラムと ローの 2回に分

けて書き込むので　この動作によっても　アク

セスタイムが　遅くなります。

　D-RAMの短所ばかり、書きましたが、D-RAM

の長所は　ワンチップでの　メモリ容量が　大き

い事です。　よってメモリ容量が大きいので、他

の短所には　目をつぶってくれ。という事なので

しょう。

　因みに　S-RAMの短所は　単位面積当たり

の記憶容量が　D-RAMと比べ　小さい事です。

　S-RAMの長所は　リフレッシュの必要が無い

ので、低消費電力、高速アクセスが可能です。

　そして、D-RAMも　S-RAMも　揮発性のメモリ

ですが、S-RAMは CPUが　アクセスしなけれ

ば、消費電力は極めて小さいので　電池等で

約 3V程度で 電源バックアップが 出来ます。

　という事で、D-RAMと　S-RAMの 違いの

説明でした。



AE-3069USB基板のメモリマップ

AE-3069USB基板のメモリマップを示し、基板裏側に実装

される外付け D-RAMの　アドレス範囲を　確認します。

　右のメモリマップを見れば分かりますが、D-RAMの

配置アドレスは、400000h ～ 5FFFFFh です。　CS2の

領域を　フルに　使用してます。　ちなみに　CS0～CS7は

7種類の　チップセレクト信号と　考えて下さい。

　それと、先ほども書きましたが 使用されるD-RAMの

データバス幅は 8bitです。 よって、一回のアクセスで　読

み書き出来るデータの 幅は 8bitのみです。　16bit整数、

または　32bit整数を　読み書きする事は　可能ですが、

16bit整数の場合 ２回連続アクセス、 32bit整数の場合、４

回連続アクセスを行います。 よって、その分 遅くなるとい

う事です。　内蔵の RAMメモリと比べると　遅いです。　
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AE-3069USB基板の 回路図

　回路図は、細かくて詳細を

見るのは無理と思います。

　大雑把に右下の　赤枠内

が　D-RAMです。

　秋月電子の基板を購入す

ると　説明書に回路図も　記

載されてます。 その印刷物

を　画像としてスキャナで取

り込んだ事もあり　荒い画像

となっています。

　バス線は　２つの 40ピンコ

ネクタで、外部に引き出せる

ので、他の 外部素子も イン

タフェース仕様が合えば　接

続する事も可能と思います。



D-RAM、ソフトからのアクセス

AE-3069USB基板裏面の D-RAMですが、今度

は　ソフトからの　アクセスについて説明します

。　まず、初期化が 必要です。　

　幸い、秋月の基板キットの説明書に D-RAM

を　使用する上で　必要となる　I/O レジスタに

コマンドを出すシーケンスが書いてありました。

　右の　赤枠で　囲った部分です。

但し、Cのソースでは　ありませんので、移植時

ひと手間掛かります。

　初期化が、終われば通常のメモリとして

自由にアクセスできます。

　尚、右上の赤枠上の文言は　秋月電子基板

キットの説明書に　記載されていた文面です。

付属D-RAMの使い方

付属D-RAMは　モード５で 使用します。

電源ON直後の状態では、正しく D-RAMを　使う

事が 出来ません。 以下のように設定します。

　P1DDR、P2DDR、P8DDRは　HEWの　C上に

簡単に移植出来ると 思いますが、RTCOR、

RTMCSR、DRCRB、DRCRA は　ちょっと悩むと

思います。　参考にするのは　iodefine.h と

H8/3069の ハードウェアデータシートです。

次ページに　移植結果をお見せします。



   P1DDR = 0xFF; // P1 は　Address Bus A7 ～ A0
   P2DDR = 0xFF; // P2 は　address Bus A15 ～ A8　
   P8DDR = 0x1C; // P8.b2=CS2(D-RAMの区画)

   BSC.RTCOR = 0x0A; // リフレッシュタイム コンスタント レジスタ
   BSC.RTMCSR.BYTE = 0x18;// リフレッシュタイマコントロール／ステータスレジスタ
   BSC.DRCRB.BYTE = 0x90; // DRAMコントロールレジスタB
   BSC.DRCRA.BYTE = 0x30; // DRAMコントロールレジスタA

   wait_ms( 10 ); // 約 10ms D-RAM 安定時間待ち

　上のソースに　BSC という名称が出てますが　H8/3069の　バスコントローラの事です。

以下に、ハードウェアデータシートに書かれている概要を　転載しました。

本 LS I は バスコントローラ（ BSC ）を内蔵しており、外部アドレス空間を　8 つのエリア

に分割して管理します。　各エリアでは、バス幅、アクセスステート数などのバス仕様を

独立に 設定することが可能であり、複数のメモリを　容易に接続することができます。

また、バスコントローラは　バス調停権機能を持っており、内部バスマスタである CPU、

DMAコントローラ（DMAC）及び　DRAM インタフェースの　動作を制御すると共に

外部に　バス権を解放することが できます。　　との事です。



D-RAM、ソフトからのアクセス

　今回、用意した関数は　H8_300H_iocs.hに　

プロトタイプ宣言を　行っています。

// D-RAM アドレス値
// --------------------------------------------------------------------------
#define DRAM_TOP_ADR (volatile _UBYTE *)0x400000    // D-RAM 先頭アドレス
#define DRAM_BTM_ADR (volatile _UBYTE *)0x5FFFFF    // D-RAM 最終アドレス
#define DRAM_BYTE_SIZE 0x200000        // D-RAMの メモリサイズ( byte )

～～～～～～～～～～～～～～（途中省略）～～～～～～～～～～～～～～～～～～

//  ★ 秋月電子 AE-3069USB基板 実装 D-RAM アクセス処理（ dram_acc.c ）
// ---------------------------------------------------------------------
short  init_dram( void ); // D-RAM初期化（ メモリゼロクリアも行う ）
void clear_dram( _UBYTE *adr, _UDWORD len );  // D-RAM領域のゼロクリア( dram_sub.src )
void test_wr_dram( _UBYTE *adr, _UDWORD len ); // 00h～FFhのテストデータを書き込む
_UBYTE  *dump_page( _UBYTE *adr );      // 16byte x 16行 ダンプ表示

H8_300H_iocs.h

D-RAMアドレス値は、H8_300H_iocs.h 先頭に　宣言しています。

D-RAMアクセス関数プロトタイプ宣言は　H8_300H_iocs.h 下部に　あります。



　今回は、関数の中身の細かい説明は省略します。

D-RAMの初期化処理の使い方の説明をします。

//**************************

//**  D-RAM 初期化処理    **

//** -------------------- **

//**  関数値： 1 = 正常 **

//**           0 = 異常 **

//**************************

short  init_dram( void )

関数値は、１であれば、正常（ D-RAMが正常に機能

している ）で、0 であれば、異常（ D-RAMが機能して

無い ）事を　意味します。 尚、正常であれば D-RAM

を 先頭 byte から 終端 byteまで ゼロクリアします。

D-RAM内容を　ゼロクリアする関数

; ****************************************

; **  D-RAM メモリクリア               **

; ** ---------------------------------- **

; **  ER0 : 先頭アドレス（_UBYTE *adr ）**

; **  ER1 : カウンタ （ long len ）     **

; **  関数値：無し                      **

; ****************************************

    .export  _clear_dram

_clear_dram:

　大容量のメモリを高速で ゼロクリアするために

アセンブラで　出来ています。　その関係で 引数１は

ER0 レジスタで　引数２は　ER1 レジスタとなります。

　C言語から　この関数を呼ぶ場合は　先頭の _ を

取り除いた関数名で 引数は　カッコ内の　_UBYTE

*adr と、 long　len の様に　呼び出して下さい。

D-RAM全体のゼロクリアは　init_dram関数で　行って

いるので　部分的な消去に 使用して下さい。



; *****************************************

; **  D-RAM全エリアに テストデータを     **

; **  書き込み                          **

; **  テストデータは                     **

; **  00h ～ FFを 繰り返し書き込み       **

; ** ----------------------------------- **

; **  ER0 : 先頭アドレス（ _UBYTE *adr ）**

; **  ER1 : カウンタ（ long len ）       **

; **  関数値： 無し                      **

; *****************************************

     .export _test_wr_dram

_test_wr_dram:

これも　アセンブラの関数です。

C言語からの呼び出し方は　前の関数と同じです。

指定されたアドレスから　lenの バイト数分

00h ～ FFh を　繰り返し書き込みます。

D-RAMの　テスト用の関数です。

//******************************************

//**  16byte x 16行 ダンプ表示 **

//** ------------------------------------ **

//**  adr :  ダンプ表示したいデータの先頭 **

//**         アドレス　　　　　　　　     **

//**  関数値：                            **

//**  引数 adr に 256 を 足した値です。   **

//**  メモリアドレスを 連続的に ダンプし  **

//**  続ける場合は、関数値を 次のダンプ   **

//**  処理の引数として使用して下さい。    **

//******************************************

_UBYTE  *dump_page( _UBYTE *adr )

この関数は C で 出来ています。

指定された先頭アドレスから 256 byteのデータを

横 16byte分の HEX表示と 表示可能であれば

ASCII文字で 表示します。それを 16 行 縦に

表示して 計 256 byteの ダンプ表示を行います。

　目的のデータが　メモリの所定箇所に 正しく

入っているか、確認の用途で使用して下さい。



　まず最初に、init_dram関数を 呼び出して下さ

い。 通常の　データの書き込み読み出しは　ポ

インタ変数を使って行って下さい。

　D-RAMの先頭アドレスは、H8_300H_iocs.h 内の

先頭に宣言してある DRAM_TOP_ADR を 使用して

下さい。　例）2byte整数の場合：

    short  *ptr;

    ptr = (short *)DRAM_TOP_ADR;

として下さい。

他に

DRAM_BTM_ADR  // D-RAM 最終アドレス

DRAM_BYTE_SIZE // D-RAM全体のバイトサイズ

が、あります。

　では、D-RAM全領域に 00h ～ FFhのテスト

データを 書き込み、HEXダンプを行う実験を

行います。


