
前回の基板　マイコンによる検査

　前回、時間が押して出来ませんでしたが、

H8/3069Fマイコンから、I2Cの SCL、SDA そし

て追加の　LD、IRQ信号、及び ブザーの 計 5

本の 信号線から、簡易パルス出力を 行い信

号が　正常にだせるかの確認を 行います。

　まずは、5本の信号線のポート番号を確認し

ます。

I2C

追加

SCL

SDA

LD

IRQ

Buzz

出力

入出力

出力

入力

出力

分類 信号名 Direction ポートNo

Port6/b0

Port6/b1

Port6/b2

Port9/b4

PortA/b4

機能

I/Oポート

I/Oポート

I/Oポート

IRQ4

TIOCA1

ピン番号

CN1/1

CN1/2

CN1/3

CN2/3

CN1/29

　信号名　SCL、SDA、LD は　I/Oポートに 設定

して使用します。　その中で　SDAは　双方向の

データのやり取りを 行います。　IRQは　H8マイコ

ンの　IRQ4 割り込み受付け信号として設定しま

す。　Buzzは　圧電ブザー出力ですが、1KHz

から　4KHzぐらいの周波数で　ブザーを鳴らしま

す。　この関係で　H8の TCU 16bitタイマーの　

チャネル１を 使用する予定です。

　　　　　　　しかし、今回の信号線ハードが 正常

　　　　　　に 機能するか調べる用途では、マイコ

　　　　　　ン側にて　全てを 出力ポートに設定し

 て、全ポートに　異なる位相の パルス

　　　　　　出力を 行い 互いのポートで 干渉する

　　　　　　事が無いか　確認を行います。

　

I2C

追加

SCL

SDA

LD

IRQ

Buzz

出力

入出力

出力

入力

出力

分類 信号名 Direction ポートNo

Port6/b0

Port6/b1

Port6/b2

Port9/b4

PortA/b4

ピン番号

CN1/1

CN1/2

CN1/3

CN2/3

CN1/29

　マイコン側から出力する波形は　SCL端子の

信号を　基準とし、他の信号波形の位相が

どの程度遅れているかで　確認します。

　右上の信号波形を　H8マイコンから　出力し

ます。　各信号のパルス幅は、デューティ 20 で

す。　各信号の位相差は　SCL、SDA、LD、

IRQ、Buzzの順で　デューティ 20の 幅で 遅ら

せています。

SCL信号：

SDA信号：

LD信号：

IRQ信号：

Buzz信号：

20 80

Ｉ２Ｃ　マイコンと デバイスの 接続

SCL SDA

マイコン

SCL SDA

デバイス.１

SCL SDA

デバイス.２

SCL SDA

デバイス.３

Vcc

I2Cバスの接続図

　I2Cは SCL：シリアルクロック信号、SDA: 双方向

データ信号の ２本の信号線で構成されます。　標準

的な転送速度は 400Kbpsです。　デバイスによって

は、更に早い物もあります。　 また、Read/Writeコマ

ンドに 7bitのアドレスも付くので、２線に アドレスの異

なる複数のデバイスを接続する事が出来ます。

　プルアップ抵抗は必要ですが、デバイスに内蔵され

ている場合も　あります。　その場合は、デバイスの

複数接続を考慮して　やや高めの抵抗値にしてあり

ます。

長
所

①　信号線２本＋GNDでデバイスと通信可能。

②　複数デバイスを接続する事が可能。

　　複数デバイスを接続しても、信号線は２本

　　のままで、ＯＫ。　但し 各デバイスのアドレ

　　スは、重複させてはならない。

Ｉ２Ｃ

短
所

①　ＳＰＩ と比べると データ転送速度が遅い。

　という事で、データ転送速度が　あまり問題になら

なければ、 I2Cは 気軽に使えると思います。

SCL 一方方向

SDA 双方向

I2C通信シーケンス (1)

　I2C通信は、SCLと SDAの２本の信号線
を用います。待機中 SCLと SDAは、両方
とも Hiレベルです。

[1] スタートコンディション：
 今から通信シーケンスを開始する事を
マスタが、スレーブに通知するための信
号です。　SCLが、Hiの期間中に SDAを
Hiから Lowに変化させます。
[2] ストップコンディション：
　マスタが、スレーブに対し通信を終了
させる時に出します。　SCLが、Hiの
期間中に SDAを Lowから Hiに変化させ
ます。

SCL

SDA

スタート
コンディション

SCL

SDA

ストップ
コンディション

Time Time

通常のデータビットでは、SCLが Lowの
期間中に、SDAを変化させるので、デー
タビットと、スタート／ストップ コン
ディションは、区別出来ます。

SCL

SDA

通常のデータビット

Time

1 0 0

1,0,0 の 3bit出力例

I2C通信シーケンス (2)

[3] リピートスタートコンディション：
　8ピンの EEPROMをアクセスする際に
リピートスタートコンディションを発行
する場合があります。
①　SCLが、Lowの期間に一旦、SDAをHi
　　にします。
②　SCLを Hiにします。
③　SDAを Lowにします。　

最近は、殆どのマイコンに、データ用フ
ラッシュROMが入っている事もあり
外付けで 8pinのシリアルEEPROMを使う
事が、少なくなってきました。
　これにより、リピートスタートコン
ディションを使う機会も減ったように思
います。

　しかし、まだリピートスタートコン
ディションが 必要なデバイスが、一部
存在します。 殆どの場合、コマンド
Writeから、データ Readに 連続して切
り替える用途で 使われます。

SCL

SDA

リピートスタートコンディション

Time

① ② ③

I2C通信シーケンス (3)

[4] I2Cコントロールバイト：
スタートコンディション直後、最初に
出力するバイトデータが、コントロール
バイトです。今回は、7bitアドレスで
説明します。 10bitアドレスも規格上は
ありますが、私は使った事が無いです。
①　一旦 SCLをLowに降ろします。
②　スレーブのI2Cアドレスの A6 ～ A0
　　の 7bitを 順次 bit単位でスレーブ
　　に書き込みます。
③　次にデータを書込む際は、Write
　　(SDA=Low)、読出す際は、Read
 (SDA=Hi)を、1bit 出力します。
　　スレーブからの ACK/NAK(1bit)を
　　受け取ります。

SCL

SDA

I2C コントロールバイトの出力
Time

A6 A5 A4 A3 A2 A1 A0 ACK

マスタ出力
スレー
ブ出力

[5] データバイト出力（Write）：
　　内容(データ)が異なるだけで、コン
　　トロールバイト出力と同じです。

SCL

SDA

I2C データバイトの出力
Time

D7 D6 D5 D4 D3 D2 D1 D0 ACK

マスタ出力
スレー
ブ出力

R/W

I2C通信シーケンス (4)

[6] データバイト入力（Read）：
　　SDAの出力元が、入れ替わるだけで
　　シーケンスは、同じです。

SCL

SDA

I2C データバイトの入力
Time

D7 D6 D5 D4 D3 D2 D1 D0 ACK

スレーブ出力
マスタ
出力

[7] 一連の電文シーケンス例：
I2Cスレーブアドレス 3Ch に、

　　40h、41hのデータ2byteを 書き込む
　　例です。
①　スタートコンディションを実行。
②　7bitAddress = 3CHでコントロール
　　バイト(Write)を、出力します。
③　データ40hを データバイトとして
　　出力します。
④　データ41hを データバイトとして
　　出力します。
⑤　ストップコンディションを実行。

　ACK／NAKに関して：
　通常、通信制御コードの ACK、NAKは、肯定応答、否定応答の意味で、送り元が、受信
　側からNAKを受け取った場合は、再送信等のエラーリカバリ処理を行います。が、I2Cは
　どちらかというと、転送する最終バイト識別の意味合いで用います。

今回の Ｉ２Ｃプログラムの 構成

　最初、Ｉ２Ｃアクセスプログラムのローレイヤー

部分は、アセンブラで作ろうと思っていましたが

開発途中　アセンブラで　ある機能（ マクロ宣

言内で　使えるローカルラベル ）が　サポートし

てなかった事、その他　細々とした事が有り、

R8Cのアセンブラソースの移植は諦めました。

　アセンブラで　プログラムを作成する場合は、

R8Cの方が 作りやすい要素が、ありました。　

　HEWの　H8マイコンのアセンブラは、やや古

い仕様で　ちょっと扱い難い感じを受けました。

　私が、マクロを多用してプログラムを作成して

いたので、そうなってしまったという事もありま

す。　仕方ないので　ローレイヤのプログラムを

新規に　C言語で　作成し直しました。　

　仕様的に　どのような物を作ればいいのかは

把握していたので、半日ほどで出来ました。

　ファイルの構成は、以下の３本に　なります。

①　i2c_packet.h （ I2C関数のプロトタイプ宣言 ）

②　i2c_packet.c （ I2C 上位層　関数の実装 ）

③　H8_i2c_tcc.c （ I2C 下位層 関数の実装 ）

　①と　②は　過去に作成したR8C百円マイコン

の　ソースを　ほぼ そのまま使用しています。

③が、今回　H8に対応するために 新たに作った

I2Cローレイヤーの ソースです。

　どのような関数が あるのか、①の ヘッダーファ

イル中身を　お見せします。　②、③は　ソースの

記述量が　やや多いので　説明は省略します。

// I2C Port(ハードに近いレイヤ関数) 関数プロトタイプ宣言
// --

void init_i2c_port(void); // ポート初期設定
void i2C_start_cond(void); // スタートコンディション
void i2c_stop_cond(void); // ストップコンディション
void i2c_rep_start_cond(void); // リピートスタートコンディション
_UBYTE i2c_rd_adr7(_UBYTE adr); // I2C/1byte読み込み adr = 7bitアドレス
_UBYTE i2c_wr_adr7(_UBYTE adr); // I2C/1byte書き出し adr = 7bitアドレス
_UBYTE i2c_send_byte(_UBYTE dt); // 1 byte I2C 送信（ 関数値は、相手からの ACK/NAK ）
_UBYTE i2c_recv_byte(void); // 1 byte I2C 受信（ 継続 受信時 ）
_UBYTE i2c_recv_byte_final(void); // 1 byte I2C 受信（ 最終byte 受信時 ）

// (I2C_Packet.c) 上位レイヤ関数 関数プロトタイプ宣言
// --

_UBYTE i2c_check_slave(_UBYTE adr); // 指定アドレスの スレーブ有無の確認
void i2c_write_7b(_UBYTE adr, _UBYTE* buf, short len); // 指定Slaveへ、データ書き込み
void i2c_write_7bfix(_UBYTE adr, _UBYTE fdt, _UBYTE ptn, short len); // 固定Byte付き データ書き込み
void i2c_write_7bfv(_UBYTE adr, _UBYTE fdt, _UBYTE *ptr, short len); //固定Byteとポインタでの書込み
void i2c_read_7b(_UBYTE adr, _UBYTE* buf, short len); // 指定Slaveからデータ読み込み
void i2c_write_rep_7b(_UBYTE adr, _UBYTE* buf, short len); // RS前半 Write
void i2c_rep_read_7b(_UBYTE adr, _UBYTE* buf, short len); // RS後半 Read

i2c_packet.h

// 初期化処理は　省略しています
// -----------------------------
 while(1)
 {
 for(i=0; i<256; i++)
 {
① i2c_start_cond(); // I2C スタートコンディション
② i2c_send_byte(i); // I2C busへ　1byte 送信
③ i2c_stop_cond(); // I2C ストップコンディション
④ wait_ms(500); // 0.5秒 待ち
 }
 }

テストプログラム１
　ホワイルの無限ループ内に

0 から　255回の　forループが

あります。　そのループ内に

①　スタートコンディションを

　　出しています。

②　I2Cバスに iの値を データと

　　して 1byte送信します。

③　ストップコンディションを

　　出しています。

④　0.5秒の時間待ちを入れます。

　
　上記テストプログラム１を　実行して、SCL信号、SDA信号を　USBオシロで観測した波形の

動画を　お見せします。　その前に　オシロ波形の表示に　関わる各部分が　何に相当するのかを

説明します。

7 6 5 4 3 2 1 0
Ak
Nk

Start Stop

SCL

SDA

　左のグラフの見方ですが、上が SCL 下が

SDA です。 左の 縦長の赤四角で囲った部

分が、スタートコンディションです。　このグ

ラフでは 細かくて微妙ですが、SCLが　Hiの

状態で SDAを Hi から Lowに 降ろしてます

。　この動作が　スタートコンディションにな

ります。

 次に　8bitの　データbitが　並びます。

データbit は　b7 から　b0 の順で　並びま

す。　その、後　赤で　Ak Nk と書いてます

が、ACK　NAK の ビットです。

　上側の　SCKは　Hi側が　データを取り込

むタイミングを　決める信号になります。　そ

の関係で　SDAに比べ　細みのパルスに

なってます。　SDAは　データの信号なの

で、SCLのパルスに比べ、パルス幅が　広

めになっています。　最後に　ストップコン

ディションが　あります。　SCLが Hiの期間

中に　SDAが　Low から Hi に 変ります。

時間の経過

I2Cデバイスの　サーチ

　I2C デバイスの　アドレス確認のサーチ処理です。

デバイスが あれば　そのアドレスを　16進 2桁で　表示

します。　サーチ範囲は　0 から　127の範囲です。

　複数接続されていれば、その個数分　アドレスが　

表示されます。　ごくまれに　一つのデバイスで　2つの

アドレスを 占有するデバイスも あります。

// 初期化処理は　省略しています
// -----------------------------
 for(i=0; i<128; i++) // デバイスアドレス値のループ
 {
 c = i2c_check_slave(i); // スレーブ応答の確認
 if(c == 1) // Cが 1なら デバイス有り
 sci_prin_byte_hex2_1(i); // 16進2桁 表示
 else
 sci_prin_1("..");　// 無い時は ".."
 sci_prin_1(" "); // 表示の体裁調整
 if((i % 16) == 15) sci_put_crlf_1();
 }

