
1番　RTC RX8900の　I2C アクセス

　久々の　RTC RX8900のアクセスですが

かなり忘れているので、過去に作成した

「044 秋月電子 ３種類の i2C接続 RTCレ

ビュー」 動画を　見てみました。

　やや高機能な RTCで、設定用のレジス

タや、通信電文も何種類かあり、 044の

動画で、細かく説明してあったので、

044の動画ファイルから、RX8900の 設定

用レジスタと、通信電文の説明部分を　

切り出す事にしました。

　次のページから　１３ページほど

RX8900の 説明が 続きます。

　その前に　RX8900の特長を

右に 示します。

RX8900 特長

・　32.768 kHz 温度補償発振器(DTCXO)を搭載

　　高精度

・　I2C-Bus シリアル･インターフェース

・　曜,日,時,分のアラーム割り込み機能

・　定周期タイマー割り込み機能

・　時刻更新割り込み機能 (毎秒･毎分)

・　電源切り替え機能

・　OE 機能付き 32.768 kHz 出力 (FOE, FOUT 端子)

・　自動うるう年補正機能 (2000 ～ 2099 年まで対応)

・　2.5 V ～ 5.5 V の幅広いインターフェース電圧範囲

・　2.0 V ～ 5.5 V の幅広い温度補償電圧範囲

・　低消費電流 0.70 μA / 3 V (Typ.)

・　1.6 V ～ 5.5 V の幅広い計時（保持）電圧範囲

RX8900アクセスにて 不具合発生

　前回、スレーブアドレスのサーチがうまく行っ

たので、ほぼ、I2Cの動作は動くのではないか

と思っていましたが、そう 甘く なかったです。　

　最初にテストしたのが、RX8900で ややアクセ

スが　面倒なデバイスだったのも 失敗でした。

　最初に　I2Cのテストを行うのであれば、16桁

2行の LCD等を使用した方が いいです。　表示

デバイスは　I2Cで転送した文字列データを　表

示してくれるので、データが　正常に 転送でき

ているかの確認が　やりやすいです。

　下は、有機ELの SO1602A 緑表示 16桁 2行

の デバイスです。

　で、不具合発生とはなにかというと、データ転送

が正常に出来なくて　デバイスが 動かない、及

びマイコン側が　不可解な動きを しました。

　で、その前に、I2Cの　SCL、SDAのバスの仕様

ですが、2KΩ前後の抵抗で　プルアップされてま

すよね。　で、SCLは　マスターから出力される一

方通行の信号です。　それに対し、SDAは データ

を送る信号で　書き込み、読み出しの　双方向に

なります。 I2Cで　時として問題になるのは、マス

ター側と　デバイス側の 信号を　出力から入力、

入力から出力に切り替える タイミングなのです。

　で、マスター側と　デバイス側で　入出力の切り

替えタイミングが　僅かにずれると　場合によって

マスター側と　スレーブ側とで、一瞬 両方出力状

態になり、且つ　マスター側が　Hiで　スレーブ側

が　Lowの場合、出力信号同士で　衝突し、一瞬

ですが　大きな電流が流れます。

出力信号の衝突で、一瞬　大きな電流が流れ

ると、そのショックで　正常な通信が出来なく

なります。

　よって　I2Cの 規格に SDA信号の方向切り替

え時に 瞬時 衝突が発生しても、支障が無いよ

うに　信号出力は　オープンコレクタで　行う事

と決められています。

　基本、オープンコレクタ（ 今は、MOS全盛なの

で　オープンドレインですけど ）は、信号を Low

に落とすドライブ力は　強力ですが、Hiに　引き

上げる能力は持ちません。　よって、プルアップ

抵抗によって　弱く Hiレベルに　引き上げられ

ます。　これにより　信号衝突の問題を回避し

ているという事です。

　但し、このやり方では、信号が 緩やかに立ち

上がるので、転送速度は　あまり速くは　出来

ません。　

　という事で　400Kbpsという標準速後が　規定さ

れているのではと思います。

　それに対し　マイコンの入出力ポートは　基本ト

ライステートです。　３ステートとも　呼びますが

入出力端子が　①　Hiの状態、②　Lowの状態、

③　ハイインピーダンス状態（ 信号入力時　使用

する ）の　３つの状態を 持ちます。

Vcc

ON

OFF

Hi

Vcc

ON

OFF

Low

Vcc

OFF ハイイン
ピーダン
ス状態OFF

① ② ③

ON

OFF

Vcc

ON

OFF

Vcc 　左の場合、ONし
ている Tr1から
Tr4を 通り 大きな
電流が流れ、トラ
ンジスタを壊しか
ねない。

Tr1

Tr2

Tr1 Tr1

Tr1

Tr2 Tr2

Tr2

Tr3

Tr4

Hiと Lowの
 衝突

OFF ON

Vcc 　上に引っ張り上げる
トランジスタが無いた
め プルアップ抵抗の
制限を受けて電流が
流れる。
問題無しです。

Tr2 Tr4

オープンコレクタ同士の Hiと Lowの衝突

トライステートと オープンコレクタの 衝突

ON

OFF

Vcc

ON

Vcc
Tr1

Tr2 Tr4

　左の場合、左側のトラ
イステートの 上側のトラ
ンジスタが、ONして、右
側のオープンコレクタのト
ランジスタが　ONした場
合に 限って 大きな電流
が流れ、トラブルが 発生
します。

　通常　I2Cデバイス側の出力は、 オープンコ

レクタですが、マイコン側の I/Oポートは　トライ

ステート出力です。　

デバイス側マイコン側

　よって、SDAの入出力方向の切り替え時、マイ

コン側が　Hiレベルを出力していて、デバイス側

が　Lowレベルを出力しようとしていると、一瞬　

信号が　衝突します。　I2Cの場合　8bitのデータ

を出力した後、デバイス側が　ACK（Lowレベル）

を　返します。で、直前のデータの　bit0が 1 の

場合　Hiレベルになります。　この bit0 出力から

出力方向を　切り替えてデバイスが　ACKを出す

時に 一瞬ショートする危険があります。　bit0 が

0 の場合は　一瞬のショートは 発生しません。

SCL

SDA

I2C データバイトの出力
Time

D7 D6 D5 D4 D3 D2 D1 D0 ACK

マスタ出力
スレー
ブ出力

このタイミングです。

　実際、ショートした部分を記録したオシロ波形

です。

この瞬間が、Hiと
Lowが 衝突した
タイミングです。

　中途半端なレベルの段差が　ありますが、こ

れが　Hiと Lowの信号が衝突した瞬間です。

　トライステート出力は　どちらかというと　Low

の方が　やや強いです。　その関係で　Low寄

りの段差になっている物と思われます。

　一瞬ショートした程度では　出力トランジスタ

は、壊れる事は　あまり無いと思われますが、

今回の場合、ショックで　マイコンのプログラム

が 暴走したように なりました。　最初、原因が

分からず悩みました。

　青の縦長楕円、及び青の円弧の線の矢印で

　示している部分は　ACKの 出終わった後、デ

バイスも　マイコン側も SDAバスを　一瞬　オー

プン状態にしているので、プルアップ抵抗で　

ゆっくり Hi に 引き上げられています。

これは、全く問題ありません。

Data1 = 78h Data1 = 00h Data1 = 01h bit 0 = Hi
ACK = Low

　この　SDA波形は b0=0 で 最下位ビットが

Lowで 問題ありません。

bit 0 = Low
ACK = Low

Data1 = 78h Data2 = 00h Data2 = 02h

　で　H8マイコンの I/Oポート出力が　トライ

ステート出力 というか　殆どのマイコンが

トライステート出力です。

　で、どのように対応したかというと、SDAを　Low

に　する場合は、通常通り　SDAポートに 0 を　

出力します。　で、SDAポートを　Hiにする場合

は、SDAポートに 1 を　出力しません。　代わりに

データディレクションレジスタを操作して　SDA

ポートを　入力に 切り替えます。　こうする事によ

り、SDAポートは　ハイインピーダンス状態となり

プルアップ抵抗で　弱く Hi に引き上げられます。

等価的に　オープンコレクタと　同様の状態に

なったといえます。　これにより、マイコンの不可

解な暴走現象は　収まりました。

マイコンによっては、I2Cの 内蔵周辺回路を 持っ

ている物もあります。　それらの I2C出力は オー

プンコレクタ出力に してあると思います。

　過去に、R8Cの百円マイコンで　ソフトによる

I2Cを　実現しましたが、その時は トラブル無く

すんなり出来ました。　実は、R8Cの百円マイコ

ンは、I/Oポートの設定に オープンコレクタ出

力にする設定が あったのです。

　I/Oポートを オープンコレクタ出力にする設定

は、珍しいですね。　そのお陰で　R8Cの時は

楽に出来ました。

　で、H8マイコンの　I2Cですが　動き始めたの

ですが、時々データが　化ける時が　あるので

ちょっとデータ転送時の タイミング調整を 行い

ました。 　若干遅くなりましたが、それでも

388Kbpsなので　良しとします。

　今のところ、RTC　RX8900と　OLED表示器の

SO1602 を 接続して RTCから読み出した時刻

を OLEDに表示して 問題なく動いています。

　RTCよりは　簡単です。　３つの関数を　用意し

ました。

①　初期化処理 so1602_init 関数と

②　1行目の文字列表示　so1602_prin1 関数と

③　２行目の文字列表示　so1602_prin2 関数の

３本です。

　あと、用途が限定的ですが、RTC RX8900から

の データを 渡して 時刻表示を行う処理

so1602_disp_time を 入れてます。

ソースは、SO1602A.c と　SO1602A.h の ２本で

す。

　ソース表示は横長になるので、次のページに

示します。

OLED SO1602Aの　アクセスのやり方

#define SA_SO1602 0x3C // SO1602A デバイスアドレス

// 関数プロトタイプ宣言
// ---
void so1602_disp_time(_UBYTE dt[]); // 時刻表示
void so1602_init(void); // SO1602 初期化
void so1602_prin1(char *p); // SO1602 1行目 文字列出力
void so1602_prin2(char *p); // SO1602 2行目 文字列出力

　SO1602A.h

//** SO1602Aへ コマンド、データ出力を 行う サブ関数
//** SA_SO1602 は　OLED表示器の I2Cスレーブアドレス（ 3Ch ）
//** c1 : コマンドバイト、 d1 : データバイト、 tm : 待ち時間（ ミリ秒単位 ）
// ---
static void so1602_put(_UBYTE c1, _UBYTE d2, _UBYTE tm)
{

i2c_put_one(SA_SO1602, c1, d2); // コマンド 1byte、データ 1byte 出力
wait_ms(tm); // ミリ秒単位の 時間待ち

}

　SO1602A.c (1/5)

左は、SO1602処理のヘッダーファ
イルです。　SO1602の デバイスア
ドレスは　3Ch です。

　左下の　関数は　内部関数の　
so1602_put です。　SO1602Aに　
コマンド byteと データ byte を転送
します。　このタイプの表示器は　
コマンドを 一つ送ると、その後に　
1～20msの 時間待ちを行う必要が
あります。 よって 時間待ちの処理

も 内部関数
に入れ込み
ました。

最後の引数
tm が　時間
待ちの値で
す。

//** SO1602 初期化　**
void so1602_init(void)
{

so1602_put(0x00, 0x01, 20); // 全領域　表示消去
so1602_put(0x00, 0x02, 2); // 左上にカーソル移動
so1602_put(0x00, 0x0F, 2); // 表示 開始
so1602_put(0x00, 0x01, 20); // 全領域　表示消去

}

左は SO1602Aの初期化処理です。
それぞれの行に コメントを付けてい
るので、それぞれのコマンドの機能
は分かると思います。

　SO1602Aに送る コマンドコードは
00h と 40h が　あります。
00h は 制御コマンドです。
40h は　文字コード　表示コマンドで
す。　ASCIIコードの 41h を データと
して送ると　"A" が　表示されます。

尚、左のソースを見て 分かると思い
ますが、１回の送信電文では、1byte
のコマンドコードと　1byteの 文字
コードを送る仕様に　なっているので
文字数分　文字コードを送信するコ
マンド電文を　送る事になります。

//** 1行目　文字列出力　**
void so1602_prin1(char *p)
{

char c;

so1602_put(0x00, 0x02, 10); // 1行目 左端に
c = *p; p++; // カーソル移動
while(c != NULL) {

so1602_put(0x40, c, 1); // DDRAMに 1文字
c = *p; p++; //　文字コード書込み

}
}

　SO1602A.c (2/5)

　SO1602A.c (3/5)

//** 2行目　文字列出力　**
void so1602_prin2(char *p)
{

char c;

so1602_put(0x00, 0xA0, 10); // 2行目左端に
c = *p; p++; // カーソル移動
while(c != NULL) {

so1602_put(0x40, c, 1); // DDRAMに 1文字
c = *p; p++; //　文字コード書込み

}
}

　SO1602A.c (4/5)
２行目に　表示させる文字列出力関数は
カーソル移動の　コマンド出力関数が異
なるだけで、後は　１行目出力関数と　同
じです。

　あと、時刻表示関数ですが、やや長い
ので　次のページに　表示します。

//** 2行目　時刻表示出力
//** char dt[] : RTC 時刻 data 配列
// ---　
void so1602_disp_time(_UBYTE *dt)
{

char buf[18], tx[4];

buf[0] = NULL; // buf内に 時刻表示文字列生成
byte_bcd2(tx, dt[5]); // 月の項目 -> BCD 2桁変換
str_cat(buf, tx); str_cat(buf, "-");
byte_bcd2(tx, dt[4]); // 日の項目 -> BCD 2桁変換
str_cat(buf, tx); str_cat(buf, "/");
byte_bcd2(tx, dt[2]); // 時の項目 -> BCD 2桁変換
str_cat(buf, tx); str_cat(buf, ":");
byte_bcd2(tx, dt[1]); // 時の項目 -> BCD 2桁変換
str_cat(buf, tx); str_cat(buf, ":");
byte_bcd2(tx, dt[0]); // 時の項目 -> BCD 2桁変換
str_cat(buf, tx);
so1602_prin2(buf); // SO1602 2行目に 時刻文字列 表示

}

　SO1602A.c (5/5)

　SO1602Aの ２行目に　RTC RX8900
の 時刻情報を 表示させる文字列出力
関数です。

　コメントを見ると分かると思いますが
月のBCD 2文字＋日のBCD 2文字＋
時のBCD 2文字＋分のBCD 2文字＋
秒のBCD 2文字を 順次連結してます。
 そして、組み立てた文字列を 表示器
に 転送しています。

　次は、RTCに設定した時刻を　RTCの
秒更新 IRQ信号を　読み込み　１秒毎
に　時刻を読み出して、テラタームの画
面と　SO1602A表示器に　時刻を表示
するデモを　お見せします。

