
I2C シリアルEEPROM 24FC256

　　　　　　　　　 左の画像は マイクロチップ社

 の I2C シリアルEEPROM　

 24FC256-IP です。

 　 8ピンの ICです。

 256Kbit の 容量なので Byte

 換算で　32Kbyteです。

2.5 ～ 5.5Vの範囲内で 400Kbpsの 転送速度

で 動作するようです。 温度範囲は -40～85℃

ESD保護＞4,000V、 データ保存＞200年

100万回の消去／書き込みサイクル

Top
View

1

2

3

4

8

7

6

5

A0

A1

A2

Vss

Vcc

WP

SCL

SDA

パッケージは、

通常の DIP以外

に SOPや　その

他の形状の物も

あります。

　記憶容量は　大したことないですが、 温度範

囲が　-40～+85℃ 自動車用は、-40～+120℃

、ESD（静電気放電）耐圧が 4,000V以上、デー

タ保存 200年以上、消去／書き込みサイクル

が　100万回とか、過酷な環境でも、使用する

事を想定しているのかな。　とも思いますが、す

ごいです。 他にもデータシートにいろいろ書い

てありますが、使用する上で最低限必要な事

だけ書いておきます。

　このタイプの シリアルEEPROMには　ページ

というメモリの単位があります。 今回の　24FC

256は　64byteが　１ページになってます。

　このページというのは、書き込みに関わって

きます。　読み出し時は関係ないです。　byte

単位で アクセス出来るようです。　EEPROMと

いうのは、書き込み時　一連のシーケンスが

必要で　ミリ秒程度の時間が かかります。

　遥か昔の 窓付きEPROMは、マイコン側で

書き込みシーケンスのプログラムを　作った事

があります。　やや面倒くさい処理だったと思い

ます。

　I2Cの シリアルEEPROMは、書き込みシーケ

ンスに関しては　EPROM内のマイコンが やっ

てくれるので、面倒な書き込みシーケンスに関

して考える必要は ありません。　一つ意識して

おいて欲しいのは、先ほども書きましたが、書

き込みに関して　ミリ秒程度の時間が　かかる

事です。　で、1byte毎に書き込みシーケンスを

行うと　やたら遅くなるので、ある程度まとまっ

たバイト数で　書き込みシーケンスを　行いま

す。 そのまとまったバイト数というのが 64byte

の　ページです。 その関係で　シリアルEEPRO

M内には、64byteのバッファRAMが あります。

　I2Cバスにて　高速に データを バッファRAMに

書き込み、シリアルEEPROM内の バッファRAM

から　EEPROMに　書き込みシーケンスを行いま

す。　で、内部の書き込みシーケンスを　実行し

ている最中は、I2Cバス側から シリアルEEPROM

を　見ると　busy状態になっており、I2Cの通信

シーケンスに反応しません。 Write bufferも 64

byteしかないので　書き終わるまで待たされる事

に なります。　では、書き終わったかどうか確認

するのはどうするのか。　というと データシートに

ACKのポーリングを行う。　と書いてあります。

　これは、どういう事かというと、EEPROM側が

書き込みシーケンスで 忙しいと、マスタ側で

I2Cの コマンドバイトを送ると 受け取った合図の

ACK(Lowの 1bit)を　返してくれないのです。

ACKが 返らない状態は　まだEEPROMは Busy

状態と判断する事が出来る。　という事です。　

　具体的に、ACKのポーリングは　どのように

行うのかというと、C言語にて　関数を 1本用意

します。　引数として EEPROMの I2C スレーブ

アドレス（ 今回は 50h ）を渡し　コントロールバ

イトを出した後の ACK/NAK を　関数値として

返す関数です。　関数内の手順は

①　スタートコンディション発行

②　I2Cコマンドbyteの送信

　　　（ 7bit スレーブアドレスと　Write bit)

③　スレーブからの ACK or NAK 受信

④　ストップコンディション発行

⑤　そして　ACK or NAKを 関数値として返す。

という事になります。　

　実は、この機能を持つ関数は、既に　作って

あります。　i2c_packet.c 内の　
_UBYTE i2c_check_slave(_UBYTE adr);

// 指定アドレスの スレーブ有無の確認

　が　それです。　最初は　I2Cバスに接続される

全てのスレーブアドレスを　サーチするために作

成しましたが、今回の用途でも 使えそうです。

以下が　関数の内容です。

//**
//** I2C 7bitアドレスのスレーブ確認 **
//** ---------------------------------- **
//** 引数　adr： スレーブアドレス **
//** 関数値： = 1 : Slave 有り **
//** = 0 : Slave 無し **
//**
_UBYTE i2c_check_slave(_UBYTE adr)
{
 _UBYTE sts;

 i2c_start_cond(); // I2C スタートコンディション
 sts = i2c_wr_adr7(adr);
 // Slave有無確認の 仮アクセス
 i2c_stop_cond(); // I2C ストップコンディション

 return sts;
}

Top
View

1

2

3

4

8

7

6

5

A0

A1

A2

Vss

Vcc

WP

SCL

SDA

24FC256の 足

ピンに関しての　

説明：

１～3ピンの A0、A1、A2 は、I2Cの デバイスア

ドレスの 下位 3bitを設定できるという事です。

　今回の用途では、１～3ピンを　グランドに　接

続しているので　下位 3bitは　000 です。

　上位 4bitが　1010 固定なので デバイスアド

レスは　50hに なります。　仮に A2=0、A1=0、

A0=1 の場合は　51hに なります。

　あと　WP は　Write Protect 機能で、Hi に す

ると 書き込みが　出来なくなります。　常時　読

み書き出来る様に　するには　WPを　グランド

に接続して下さい。　

24FC256-IP

64byte
RAM Buffer

ページ 0

ページ 1

ページ 2

ページ 3

ページ 4

Address

0h

40h

80h

C0h

100h

140h

ページ 511

7FC0h

8000h

I2C
Bus

　I2Cによる シリアルEEPROMの読み書きの

電文もデータ長は　64byte単位にして転送しよう

と思います。　64byteに 満たない端数は　その長

さでも、書き込み出来ます。

EEPROM

　64byteに 満たない端数は　その長さでも、書

き込み出来ます。 と 説明しましたが、物理的

には、64byte単位で書き込むので、64byteの

buffer RAM内に 残っていたゴミも 一緒に　

64byte として書き込みます。

　例えば、100byteの データを書き込む場合は

2ページ分で、１回目の電文で 64byte転送して

２回目が　100 - 64 = 36 で　36byte転送して書

き込む事になります。　実際は　64byteの単位

で　書き込むので 後半の 28byteの エリアに

残っているゴミも 一緒に書き込みます。　

64Byte有効データ1回目書き込み：

２回目書き込み： 36Byte有効 28Byteゴミ

SSDA

書き込み電文　シーケンス図

A
C
K

A
C
K

A
C
K

A
C
K

Control
Byte

High
Address

Low
Address

先頭
データ

A
C
K

最終
データ

SDA

Time

P

S

P

スタートコンディション

ストップコンディション

読み出し電文　シーケンス図

SSDA
A
C
K

A
C
K

A
C
K

Control
Byte

High
Address

Low
Address

R

R リピートスタート
コンディション

A
C
K

A
C
K

Control
Byte

先頭
データ

A
C
K

最終
データ

P　ちょっと　細かくて見にくいですが、右に　書き

込み、読み出しの I2C電文を　示します。

Time

BME280 温度、湿度、気圧センサーデバイス

　センサーデバイスは　何にしようかと思ってま

したが、温度、湿度、気圧センサーデバイスの

BME280に しました。　ドイツの　ボッシュという

メーカーの製品です。 　マイコン等のパーツを

扱っている通販では、このセンサーデバイスは

よく見ます。　Arduinoでも　この BME280の ス

ケッチもある様で　Arduino上であれば　あっさ

り使う事が 出来るでしょう。

　H8マイコンで　この BME280 を 動かすため　

Arduinoの ソースを　そのまま取り込もうとする

と、しこたま コンパイルエラーが 出ます。 コン

パイルエラーに　ならないエラーも あります。

　まずは、Arduinoの BME280ソース内のコー

ディングで、I2Cから　取り込んだデータを　や

たら長い bit長の シフト演算をしている箇所が

いくつか あります。

　これは、何をやっているのかというと　BME280

の整数データは　ビッグエンディアンの並びなの

です。 よって byte単位の データを bitシフト演算

で、上下バイトを差し替えているのです。

　2byte整数もありますが、4byte整数もあるので

やたら長い bitシフト演算が あるのです。　それ

らの演算式は　もう一つ役割が あって、byte

データ上位、下位を連結して　Word データとして

取り出したいという事です。

　先に　必要無い処理を お伝えします。　

整数に関わる　上下バイトの 入れ替えは　必要

ありません。　何故なら　H8マイコンも　ビッグエ

ンディアン だからです。

　但し、byteデータ上位、下位を連結して　Word

データまたは　DWord データ として取り出す処理

は　必要です。　

 　で、もう少しスッキリした記述に したかったの

で、構造体と 共用体を組み合わせたデータで

byteデータを並べ直し、同じアドレスに存在す

るWord または DWordの変数から、2byteまた

は 4byteの整数データを取り出す事に します。

　右に 構造体、共用体の 型宣言を示します。

一見、難しそうに見えますが、メモリ上のイメー

ジが 掴めると 単純です。 2byteの例で示すと

、TYP_CHG2　Bw;　という変数を 宣言します。　

Bw.b.h = 上位バイト、Bw.b.l = 下位バイトを

代入します。　そして 同じアドレスの　Bw.w に

て　2byte 整数データを　取り出せます。

　右の 2byte、4byteの構造体は　既に　H8マイ

コン仕様（ ビッグエンディアン ）に なってます。

　因みに、リトルエンディアンの場合は、並びが

下位、上位なので　_UBYTE l、h; に なり

ます。

typedef struct { // 2byte 構造体データ
_UBYTE h, l;

} BYTE_2;

typedef union { // 2byte 共用体データ
BYTE_2 b;
_UWORD w;

} TYP_CHG2;

typedef struct { // 4byte 構造体データ
_UBYTE hh, hm, ml, ll;

} BYTE_4;

typedef union { // 4byte 共用体データ
BYTE_4 b;
_UDWORD lng;

} TYP_CHG4;

　H8マイコンで　BME280の Arduinoソースを

そのまま取り込もうとすると、しこたま コンパイ

ルエラーが 出る。 と 言いましたが、どういうと

ころで出るかというと、整数の型宣言で 引っか

かります。　Arduinoソースの 大元は ボッシュ

の BME280の データシートに記載されていた

ソースです。

で、整数の型宣言が　特殊で　HEWの　H8マイ

コン Cコンパイラでは　全く　受け付けてくれま

せん。　よって、H8マイコン Cコンパイラの プロ

ジェクトに　標準で入っている typedefine.h で、

定義されている　特殊な整数データ型に　変更

する事にしました。　右側に　示しますが

左が　Arduinoソースの整数データ型

右が　HEW環境の 整数データ型です。

特殊なと書きましたが、これは 今までが　intの

 int8_t ---> _SBYTE
 uint8_t ---> _UBYTE

 int16_t ---> _SWORD
 uint16_t ---> _UWORD

 int32_t ---> _SDWORD
 uint32_t ---> _UDWORD

　　　　　　　　　　　　　　　　　　　長さというか　byte

 数が　CPUにより

　　　　　　　　　　　　　　　　　　　異なる長さに なる

　　　　　　　　　　　　　　　　　　　事を 懸念して　明

　　　　　　　　　　　　　　　　　　　確に bit数が 分か

 る 整数宣言名を

gccの環境で 試験的に 作成された物と思われま

す。　私も　ハッキリした事は　分かりません。

Microsoftの 見解では　標準では無い。 が、

一応　使えるようにしておく。 との事でした。

 で、HEWの　typedefine.h で、宣言されている　

右側の整数型の 型名ですが　多分、H8マイコン

環境独自の 物と思われます。 で、型名の最初に

_ が　付いてますが、 これも、Microsoftの見解で

は　標準では無い。　という事を 明示するために

先頭に _ を　付ける　という事のようです。
　ちょっと思ったのが 右側の H8マイコン環境の型名は

アセンブラ的な発想の名称ですね。　私は 好きです。

　それと、全体のプログラムの構成を　変えまし

た。　それは　Arduino環境では　メインの　.ino

ファイル内に　初期化処理の setup関数と、メイ

ンループとなる loop関数が 起動処理から読み

出されるようになってます。

　で、setup関数と　loop関数内に BME280の処

理とパソコン側で データ表示するための　シリ

アル通信が、メインとして　コーディングされて

いるので、メインから　BME280の機能を サブ

ルーチンとして呼び出す形態に なっていない

ので、BME280の サブルーチンライブラリ的な

イメージに　構成をかえました。

　が、今回行った移植作業というか、変更作業

です。

BME280の　大雑把な処理内容

　処理は　大きく初期化処理と、毎回の測定処理

になります。

　初期化処理は、各種動作モードを 設定する

処理と、他のセンサ素子では　あまり見ない処理

として、補正データ読み込み処理が　あります。

　補正データ読み込み処理は、私の推測ですが

多分、工場出荷時に　BME280の 各個体デバイ

スの特性のバラツキを　自動測定して、真値から

のズレを 補正するための系数を 各BME280デバ

イスの　ROMに書き込んである物と思われます。

①　温度補正データは、dig_T1 ～ dig_T3 の

　　３Wordの データです。 (Uが 1個、Sが 2個)

②　湿度補正データは、dig_H1 ～ dig_H6 の

　　Byte、Word入り混じったデータが　計 6個あり

　　ます。　 (Uが 2個、Sが 4個)

③　気圧補正データは、dig_P1 ～ dig_P9 の

　　9Wordの データです。 (Uが 1個、Sが 8個)

　因みに、Uは　符号なし整数で、Sは符号付き

整数です。

次は、毎回行う測定処理です。

２回コマンド設定を行い、8byteの測定データを

取り込みます。 dacという変数名の byte配列の

先頭8byteに 測定データが　入ります。

dac[0]が 上位byte、dac[1]が 中位byte、

dac[2]が　下位byteの　3byte(24bit) 整数値を

右 4bit シフトして adc_P（気圧生データ）に

20bit分解能の値として代入してます。

　同様に　dac[3]、dac[4]、dac[5] の値に　同様

の処理を行い、adc_T (温度生データ)に　

20bit分解能の値として代入してます。

　

　次に　dac[6]、dac[7] の値を　連結して

Wordデータにして、adc_H (湿度生データ)に　

16bit分解能の値として代入してます。

　adc_P、adc_T、adc_Hの ３つの 測定生データを

用いて、気圧、温度、湿度の 補正計算を行いま

す。　そして　pres_cal (気圧補正データ)、

temp_cal (温度補正データ)、humi_cal (湿度補正

データ) の ３つが　出来ます。

　補正計算の関数名は

BME280_compensete_P が　気圧補正計算

BME280_compensete_T が　温度補正計算

BME280_compensete_H が　湿度補正計算

となります。　因みに補正計算の内容は

私には　さっぱり分かりません。

最後に　表示上で　適切な値となるように、単位

変換の　処理をして、pres(気圧)、temp(温度)、

humi（湿度）データに　しています。

　

　あと、値を　メインに返さなければなりませんが、一つの関数値で　3つの値を

返せませんので、計算した値を取り出す関数を　３つ用意しました。

下の bme280.h ファイル 関数プロトタイプ宣言の　下３本が　単純に値を

取り出す関数です。　値は　long になってますが、単位は　温度が　0.1℃単位で

、湿度が　0.1％単位、気圧が　0.1Hpa単位に　なってます。

　文章ばかりで、非常に 分かり難かったと思います。　プログラムソースをダウン

ロードして、この 静止画 ｐｄfファイルと　見比べると　プログラムの内容が　多少

見えて来ると 思います。 　

　
// BME280 処理関数　関数プロトタイプ宣言（ bme280.h ）
// ---
void init_bme280(void); // BME280 初期化処理
void measu_bme280(void); // BME280 測定実行 (1秒以上の周期で行う)

long get_bme280_temp(void); // BME280 温度変換データ取り出し
long get_bme280_humi(void); // BME280 湿度変換データ取り出し
long get_bme280_pres(void); // BME280 気圧変換データ取り出し

BME280
基板の画像

BME280

BME280

