
R8Cマイコン アセンブラの基礎

　今回は　どこから始めたらいいのか　悩みま

すね。

　アセンブラは　他の言語と異なり　対応する

CPUのアーキテクチャと　密接に連携していま

す。 特に命令や アドレッシングモードは ＣＰＵ

と １対１に 対応します。

　よって 最初は　アセンブラではなく、Ｒ８Ｃマ

イコンの CPU の話から始める事にします。

　最初に　レジスタを説明しようと考えましたが

そのレジスタを説明するにあたり、最低限出て

くる アセンブラの用語を説明しないと　レジスタ

と　アセンブラの連携が　分かりにくいと判断し

ました。　という事で 話が ２転 ３転して申し訳

ありませんが　最初、概念的な　用語の説明を

行う事にしました。

　まずは　ニーモニックコードを　説明します。

ニーモニックコードですが　CPUが実行するマシ

ン語と　1対１に 対応する　コードです。 １と 0で

構成されるマシン語では　意味が分かりにくいの

で もう少し意味が分かりやすい 短い単語で構成

されています。　で、 一つ疑問が出てきました。

 一般的に　ニーモニックコードというと　MOV命

令とか ADD命令とか　マシン語の オペコードを

指している場合が 多いのですが　オペコードだ

けを指して　ニーモニックコードというのか、オペ

コード、オペランドの両方を指して　ニーモニック

というのか、気になった次第です。　で、調べまし

たが 明確には書いてないですね。

　通常オペコードを指す場合が多いですが、オペ

ランドも　含めてニーモニックという場合もあるよ

うです。その場合、オペランドは　アドレス値、数

値は ラベル名や 値を示す名前に なってます。

　よってニーモニックは　意味が分かりやすい名

前に　置き換わっている状態を指すのかもしれ

ませんね。　で、 オペランドですが、日本語風に

表現すると 命令語の修飾子で しょうか。？ オ

ペコードに続く パラメータみたいな物です。

例を　少し示します。

 ｵﾍﾟｺｰﾄﾞ ｵﾍﾟﾗﾝﾄﾞ
 PUSH.w A0

 MOV.w R1, A0

 MOV.b [A0], R0L

　 POP.w A0

 RTS

上記の PUSH.w や　MOV.w や　MOV.b や　PUSH.w

POP.w や RTS は、オペコードです。 それに対し　右

に続く 文字列（レジスタ名や アドレス値、データ値）が

オペランドになります。　上の例では A0、R1、R0Lなど

が　オペランドです。 で　R1,A0 や　[A0],R0L は コン

マで 区切って２つの オペランドを 並べています。

　左が　第一オペランド、右が 第二オペランド と

呼びます。　因みに 左の例では　RTS命令の 様

に　オペランドが 無い命令も あります。

　通常オペランドが 二つ並ぶ場合は　MOV命令

などの　転送命令です。

第一オペランドが　転送元で

第二オペランドが　転送先です。

例）　mov.w r1, a0

では　r1 が　転送元で 、　a0 が　転送先です。

　それと、フェッチサイクルとか　イグゼキュート

サイクルは　フェッチサイクルは １命令を メモリ

から 取り込むサイクルです。 細かくいうと メモリ

から命令を取り込んだ後、命令解読というか デ

コード処理も　フェッチサイクルに含むようです。

　イグゼキュートサイクルは　読み込んだ命令を

実行するサイクルです。

　通常 フェッチサイクルと　イグゼキュートサイ

クルは　交互に繰り返し行い　プログラムを　順

次実行して行きます。　遥か昔の機械は　固定

語長で　フェッチと　イグゼキュートを　単純に

１サイクルずつ交互に繰り返してプログラムを

実行してきました。 マイコンが 出てきてから

マシン語の 可変語長が　普及して フェッチサイ

クルは　最初のオペコードを　取り込んだ時点

で　何バイト命令であるか判定し　その後の

2バイト目以降を 読み込むため フェッチサイク

ルのサイクル数は オペコードにより変則的に

変化します。　で、アセンブラのソースですが、

1行の書式は　[シンボル] [オペコード] [オペラ

ンド] [コメント]と なります。　ラベルは シンボル

の中に 含まれます。 シンボルは　行の先頭カ

ラムから　記述します。　シンボルの先頭文字

に 数字を使う事は 出来ません。

　逆に　数値を記述する際に　先頭文字に　アル

ファベットは　使えません。 シンボルと御認識さ

れます。

　よって 16進数の数値で、先頭の文字が　A～

Fになる場合が　ありますが　その場合は　先頭

に 0 を 付けます。

例）　FF00h --> 0FF00h

それと　シンボル、オペコード、オペランドの間は

１つ以上の スペース または TABも 使えます。

　コメントは　； を 入れる事で　それより右は

コメントになります。

　次に　アセンブラのソースと　オブジェクトコード

に変換した物を　１行で見れる　リスティングファ

イルの　サンプルを　お見せします。

 SEQ. LOC. OBJ. 0XMSDA*....SOURCE STATEMENT....7....*....8....*....9.

 4425 .glb _poke

 4426 00090 _poke:

 4427 00090 C2 S push.w a0

 4428 00091 73 14 mov.w r1, a0

 4429 00093 73 21 mov.w r2, r1

 4430 00095 72 26 mov.b r1l, [a0]

 4431 00097 D2 S pop.w a0

 4432 00098 F3 rts

　上の テキストは　R8C_IOCS_Base.a30の　C言

語から呼び出す ポーク関数の　リス ティング

ファイルの一部分を 切り出しました。

　一番上の行に　左から SEQ.は 単に行番号で

す。LOC. は ロケーションで　メモリのアドレスで

す。　OBJ.は 16進表現の マシン語です。

　この ポーク関数は　ロケーション 90h～98hに

配置されています。　この番地は 実行時のアド

レスではありません。　リンカで複数のモジュー

　

ルを連結編集するので　番地は 後方に ズレて

きます。 push.w a0 の　マシン語は　C2h で　

1byteです。　mov.w r1, a0 の　マシン語は　

73 14h で　2byteです。　R8Cの オペコードの

マシン語は　命令により　1byteの場合と 2byteの

場合が　あります。

 リスティングファイルだと ニーモニックと マシン

語を　左右に並べて 見比べ出来るので、いいか

なと思い　載せてみました。

R8C　CPUコア

R0H R0L

R1H R1L

R2

R3

A0

A1

FB

R8Cマイコン CPUコアに関して

　左は 汎用レジスタバンクと呼ばれるもので

す。　R0、R1、R2、R3、A0、A1 は　通常よく使

います。　A0、A1は　ポインタレジスタですが、

値の転送、算術、論理演算に使用できます。　

逆に R0 ～ R3は、ポインタレジスタとしては　

使えません。 R0は　上下 8bitに分けて R0H、

R0Lに 使用できます。 R1も同様に分けて使用

SB

INTB

USP

IUSP

PC

FLG

出来ます。 それと、R2と　R0を連結して 32bit レ

ジスタとして使用できます。　同様に　R3と　R1を

連結して 32bitレジスタとして使用できます。

　あと、汎用レジスタバンクの　下にある　FB で

すが、フレームベースレジスタです。　これは　FB

相対アドレッシングに使用します。　主な用途は

C言語の 関数内で宣言する Auto変数を アクセ

スするレジスタとなります。　C言語と　アセンブラ

の関数を 組み合わせて使用する場合は　C言語

側で　使用している可能性が高いので アセンブ

ラ側では使わない方がいいです。

　それと、汎用レジスタバンクは　２つあります。　

汎用レジスタバンクに 影を付けて描いているの

は そのためです。

　汎用レジスタバンクの切り替えは フラグレジス

タの　Bフラグを 設定する事により、瞬時に レジ

スタバンクを 切り替えられます。

汎用レジスタバンクの切り替えは 割り込み処理

において絶大な高速応答性を 実現出来ます。

昔 Z80においても同様の機能がありました。

通常の割り込み処理の場合は 全ての汎用レジ

スタを スタックエリアに退避する事になります。

R8Cマイコンでは R0、R1、R2、R3、A0、A1、FB

の 7本の 16bitレジスタを　スタックに積み上げ

る事になります。　且つ R8Cマイコンでは　デー

タバスが　8bitのため　1本のレジスタを　スタッ

クに積み上げるため データバスを ２回通ってス

タックエリアに　積み上げる事になります。　よっ

て レジスタバンクをスタックに積み上げるため　

計 14回データバスを　アクセスする事になりま

す。 これじゃ　割り込み応答が 遅くなりますよ

ね。　但し、一つ制限が有りレジスタバンク切り

替えは　バンクが 2つしか無いので バンク切り

替えで、多重割り込みには 対応出来ません。

　という事で　複数の割り込み要因がある場合、

割り込み処理の優先順位等を　考える必要があ

ります。　最優先の割り込み（非常に高速の応答

性を要求される割り込み）にだけ、レジスタバンク

の切り替えを行うのが　有効と思います。

　それより低い優先順位の割り込み処理には

汎用レジスタの退避、復帰は　通常の push、pop

命令で　スタックに積み上げる事になります。

　割り込み処理は、ちょっと難しい話になりました

ね。　例えば、STEPモーターの相の切り替えを　

割り込み処理にて行う場合、早い速度で 回転さ

せる場合、1秒間に 10,000回ぐらい　10KHz周期

ですね。 割り込みが発生する事は　あり得ると

思います。

　レジスタバンクの話から　割り込み処理の話に

なってしまいましたね。　残りのレジスタの話に移

ります。

R8C　CPUコア

R0H R0L

R1H R1L

R2

R3

A0

A1

FB

SB

INTB

USP

ISP

PC

FLG

　右側のレジスタですが、システムの起動時　

初期値を 設定する時ぐらいで　直接アクセス

は あまりしないと思います。　フラグレジスタは

アセンブラでは ちょこちょこアクセスするかな。

　まず、SBですが SB相対アドレッシングに 使

用します。 USPはユーザスタックポインタです。

通常の関数呼び出し時に使用します。　ISPは

割り込み用スタックポインタです。　

　INTBは　割り込みテーブルレジスタで　20bitで

構成されており、可変割り込みベクターテーブル

の先頭番地を示します。　通常は 固定ベクトル

テーブルの 手前に配置されます。 可変割り込み

ベクターテーブルには　タイマーや　シリアル通

信の　内蔵周辺回路の 割り込みを登録します。

　PCは　プログラムカウンタです。　次にフェッチ

する命令の番地を 指しています。 命令のフェッ

チに連動して　インクリメントされます。

　JMP命令を実行した場合等は　PCの値が 飛

び先のアドレスに　設定し直されます。

JSR命令　ジャンプサブルーチン命令の場合は

現在の　PC値を　スタックに積み上げた後に

サブルーチン先頭アドレスを　PCに設定して

飛び先の命令を　フェッチし始めます。

フラグレジスタは　次で説明します。

IPL U I O B S Z D C
b0b7b8b15

フラグレジスタ

キャリーフラグ
デバッグフラグ
ゼロフラグ
サインフラグ
レジスタバンク設定フラグ
オーバーフローフラグ
割り込み許可フラグ
スタックポインタ設定フラグ
割り込み優先レベル

キャリーフラグ：　　　　　　　　算術論理ユニットで発生した キャリー、ボロー、シフトアウトしたビットを保持します。

デバッグフラグ：　　　　　　　　Dフラグは　デバッグ専用です。 0 に して下さい。

ゼロフラグ： 演算の結果が　0 のとき　1 になります。　それ以外の時　0 に なります。

サインフラグ：　　　　　　　　　 演算の結果が　負のとき　1 に なります。 それ以外の時　0 に なります。

レジスタバンク設定フラグ：　Bフラグが　0 の場合、バンク 0 が 指定され、1 の場合 バンク 1 が 指定されます。

オーバーフローフラグ：　　　 演算の結果が オーバーフローしたとき　1 になります。 それ以外は　0 です。

割り込み許可フラグ：　　　　　マスカブル割り込みを許可するフラグです。 I フラグが　0 で禁止、1 で許可です。

　スタックポインタ設定フラ
グ：
　Uフラグが　0 の場合
ISP が指定され　1 の場合
USP が 指定されます。

　USP=1の場合でも　割り
込みが　発生した場合は、
一時的に ISPが　指定さ
れ、割り込みから復帰した
ら　USPに 戻ります。
　よって 通常の関数呼び
出しは USPで 行います。

 　最後に　割り込み優先レベルですが　

IPLは、3 bit で構成され レベル 0 ～ 7 までの

8段階の 割り込み優先レベルを指定します。

　要求があった割り込みの優先レベルが　IPL

より大きい場合、その割り込み要求は　許可さ

れます。

　割り込みの優先レベルを設定して割り込み処

理を行う事は 多重割り込みを　許可して割り

込みを行う事になり高度な使い方になります。

　割り込み要因が少なくて　特に高速応答が　

必要な割り込み処理が　無い場合は　全て割

り込み優先レベルは　同一設定でも構わないと

思います。

　高度な割り込み処理を行う場合、割り込み処

理の 実時間を　オシロスコープ等で　計測して

検討する必要も　あります。

　以上　CPUコアのレジスタの説明でした。

　あとアセンブラで使用する　CPUコアに関わる

絶対必要な物として重要な　CPUの命令を　意

味するニーモニックコードが　あります。

　大雑把に一覧で示します。　　

機能 ニーモニック 内容

転送

MOV 転送

MOVA 実行アドレスの転送

MOVDir 4bitデータ転送

POP レジスタ／メモリの復帰

POPM 複数レジスタの復帰

PUSH

PUSHA 実行アドレスの退避

PUSHM 複数レジスタの退避

LDE 拡張データ領域からの転送

STE 拡張データ領域への転送

STNZ 条件付き転送

STZX 条件付き転送

レジスタ/メモリ/即値の退避

機能 ニーモニック 内容

転送 XCHG 交換

ビット処理

BAND ビット論理積

BCLR ビットクリア

BMCnd 条件ビット転送

BNAND 反転ビット論理値

BNOR 反転ビット論理和

BNOT ビット反転

BNTST 反転ビットテスト

BNXOR 反転ビットの論理和

BOR ビット論理和

BSET ビットセット

BTST ビットテスト

BTSTC ビットテスト＆クリア

BTSTS ビットテスト＆セット

ビット排他的論理和BXOR

ROLC キャリー付き左回転

RORC キャリー付き右回転

回転

ローテート

ROT

SHA キャリー付き左回転

SHL キャリー付き右回転
シフト

機能 ニーモニック 内容

ABS 絶対値

ADC キャリー付き加算

ADCF キャリーフラグの加算

ADD キャリー無し加算

CMP 比較

DADC キャリー付き 10進加算

DADD キャリー無し 10進加算

DEC デクリメント

DIV 符号付き除算

DIVU 符号なし除算

DIVX 符号付き除算

DSBB ボロー付き 10進減算

DSUB ボロー無し　10進減算

EXTS 符号拡張

INC インクリメント

MUL 符号付き乗算

算術演算

NEG 2の 補数

RMPA 積和演算算術演算

機能 ニーモニック 内容

SBB ボロー付き減算

SUB ボローなし減算

AND 論理積

NOT 全ビット反転

OR 論理和

TST テスト

ADJNZ 加算＆条件分岐

SBJNZ 減算＆条件分岐

JCnd 条件分岐

JMP 無条件分岐

JMPI 間接分岐

JSR サブルーチン呼び出し

JSRI 間接サブルーチン呼び出し

RTS サブルーチンからの復帰

論理演算

XOR 排他的論理和

ジャンプ

SMOVB 逆方向のストリング転送

SMOVF 順方向のストリング転送ストリング

機能 ニーモニック 内容

SSTR ストリングストア

BRK デバッグ割り込み

ENTER スタックフレームの構築

EXITD スタックフレームの解放

FCLR フラグレジスタの bit クリア

FSET フラグレジスタの bit セット

INTO オーバーフロー割り込み

LDC 専用レジスタへの転送

LDCTX コンテキスト復帰

LDINTB INTBレジスタへの転送

LDIPL 割込み許可レベルの設定

NOP ノーオペレーション

POPC 専用レジスタの復帰

PUSHC 専用レジスタの退避

その他

INT ソフトウエア割り込み

REIT 割り込みからの復帰

MULU 符号なし乗算

STC 専用レジスタからの転送

コンテキストの退避
その他

機能 ニーモニック 内容

UND 未定義命令割り込み

WAIT ウェイト

STCTX

 　ここで表示したニーモニックの数は　計　87　

でした。でも実際は 使用するレジスタの指定は

オペコードに 含まれるようで、マシン語の オペ

コード部分は　個数は 数倍に増えると思われ

ます。 オペコードの長さは 1byteで 用が足りる

命令は 1byte長で　2つのレジスタ指定を 行う

命令は　2byt長になります。それとは別に　アド

レス値や　固定データ値などが　必要な場合　

オペランドとして　オペコードの後ろに付いてき

ます。

　次は　アドレッシングモードについて

説明します。

 　アドレッシングモードとは　オペランドに関わる

種類のような物です。

　一番単純なものは　NOP命令や RTS命令 の

ようなオペランドが　無い物で　インヘレントと

呼びます。

　次に　次に第一オペランドに　即値というか

固定的な数値を 置くアドレッシングモードで

イミディエイトと呼びます。　データの初期値とか

先頭アドレスとかを　数値で 第一オペランドに

置きます。　R8Cの場合は　即値を 識別するた

めに　# を 値の前に 付けます。　

例を 示します。

 mov.b #30, r1l

 mov.w #0400h, r2

　　 　　

絶対アドレスモード： アブシリュート

オペランドの　絶対値アドレスの メモリ内容を

読み出す、あるいは書き込むモードです。

例）
; プログラム セクション

 .section program, CODE,ALIGN

 mov.w r1, eadr_hi ; b19 ～ b16

 mov.w r2, eadr_low ; b15 ～ b0

; データ セクション

 .section bss_NE, DATA, ALIGN

eadr_hi: .blkb 2 ; 拡張アドレス上位 4bit

eadr_low: .blkw1 ; 拡張アドレス下位 16bit

セクションを　跨っているので ややこしく見え

ますが　赤のラベルは　データ領域のアドレスが

入ってます。 よって 2つの MOV命令の 第二オペ

ランドは アドレスの 絶対値となります。よって

絶対アドレスモードとなります。 実用レベルで

は、アドレスの数値ではなく、上記の様にラベル

を 使用して変数のアドレスを　指定します。

このようにしておくと、変数を 追加した際に　追

加した変数より後ろの変数の番地が 後方にズ

レますが、ラベルにしておけば、変数の番地の

ズレは　気にしなくて済みます。　変数のアドレ

ス値を　16進数の数値で 指定したりすると、後

で修正する時とんでもない事になります。

よって、アドレスは　ラベルで指定して下さい。

　因みに データセクションで　.blkbとか .blkw が

ありますが、データの領域を確保する 疑似命令

です。

 .blkb 2 は　2byteの領域を確保します。

 .blkw 1 は　1wordの領域を確保します。

バイト指定か　ワード指定の 違いだけです。

データセクションの場合、ラベルは　変数名と

考えて問題ないと思います。

アドレスレジスタ間接指定： レジスタ インダイレ

クト

　このアドレッシングは　以前使いましたが、A0

または A1レジスタを用いて 仮に A0レジスタを

使う場合、A0レジスタが　指しているアドレスの

内容を　読み出す、あるいは書き込む　アドレッ

シングモード です。　例）

 MOV.B [A0], R1L　; A0で指すメモリ内容を

 ; R1L に 転送する

 MOV.B R1L, [A0] ; R1Lの内容を A0で指す

 ; メモリに 転送する

　あと、このA0レジスタに ディスプレースメントと

いって アドレス オフセットを 付ける事も できま

す。 私は 使った事が ありません。

　相対アドレス指定：　リラティブアドレッシング

これは、条件付き分岐命令で　使用されます。

フラグレジスタの C、Z、S、Oの 状態により、条

件が 成立すれば 指定された飛び先にブランチ

します。 成立しなければ 次の番地に行きます。

飛び先にブランチする時に　現在の PCの値を

中心というか　0 として　-128 ～ 127の オフセッ

トで　飛びます。 PCの相対値で飛ぶので 相対

アドレス指定といいます。 因みに 無条件 JMP

命令では　近い番地に飛ぶ時は　相対アドレス

指定で飛び、離れた　飛び先には　絶対アドレ

ス指定で　飛びます。

　あと　レジスタ、メモリ間転送では Push命令が

あります。 これは　まず スタックポインタを 積み

上げるデータ長に合わせ　デクリメントまたは　

ダブルデクリメントして、指すアドレスにレジスタ

値を　格納します。

　Pop命令は　Push命令の逆で、これは　まず

スタックポインタが指すデータを　送り先レジスタ

に転送します。　その後　データ長に合わせ　イ

ンクリメントまたは　ダブルインクリメントします。

　Push、Pop命令を使う時は　Push命令で　最後

に積み上げたデータを　Pop命令で　最初に　降

ろします。　例）
 Push.w R1

 Push.w R2

 Push.w R3

 Push.w R4

 Pop.w R4

 Pop.w R3

 Pop.w R2

 Pop.w R1

このように　なります。

アセンブラの説明は　このくらいにしておきます。

　後は　サンプルのアセンブラソースを見て、ま

ねしてソースを 作ってみると　少しずつ コツが

見えてくると思います。

　今回　この資料を作って思ったのは　あっ、こん

な命令も あったんだ。 という発見もありました。

　R8Cマイコンは、100円マイコンの M120A、

M110Aには　あまり周辺回路が　実装されて無く

て　ソフトで　I2Cや SPIの 機能を作りました。

　R8C/38Aや 35Aには I2Cや SPIとして使える周

辺回路が あるようなので　いつか試してみたい

と思います。

