
- 1 -

秋月通商製（AKI_H8）シリーズ用
共通基本 I/O処理（IOCS）仕様書

2003年3月14日



- 2 -

目 次

[ 1]  概要：  3

[ 2]  AKI_H8シリーズの種類：  3

[ 3]  メモリ容量の違いによる、プログラムへの影響： 4

[ 4]　ＣＰＵクロックによる違い：  6

[ 5]　秋月マザーボードの違い：  6

[ 6]　仕様の違いを吸収する取り決め：  7

[ 7]　共通基本モジュールのファイル構成：  8

[ 8]　アセンブルの順序：  9

[ 9]　ソースとオブジェクトの関係：  9

[10]　アセンブルのバッチファイル例： 10

[11]　ターゲット環境を切り換える際の作業 11

[12]　ターゲットモジュールが変更されない場合 12

[ A]　H8/3048と H8/3052の 書き込み時の電圧： 13

[ B]　AKIマザーの改造： 13

[ C]　C と アセンブラのインタフェース： 14

[ D]　Ｃの初期化処理： 15

[ E]　ターミナルの [BackSpace] 処理： 16

[ F]　モトローラＳフォーマット（ 16進ファイル ）： 17

[ G]　Word、DWord変数の配置アドレスの注意： 18

[ H]　割り込み、例外処理発生時のスタック： 18

[ I]　Ｃ言語の 初期化変数の ROM化における注意点： 19



- 3 -

[1]  概要：
　AKI_H8において各種アプリ（ファームウェア）を開発するにあたり、いくつかの共通部

分がある。　各種ファーム開発において都度、共通に出来る基本部分を、作り直すのでは

効率が悪い。

　それと、AKI_H8シリーズにおいてはいくつかの製品があり仕様が少しずつ異なる部分が

ある。　違いを整理すると

(1) ＣＰＵの違い

(2) ＣＰＵクロックの違い

(3) マザーボードの違い

となる。　これらの違いも吸収する形で、共通基本I/O処理（IOCS）の仕様を定義する。

そして、IOCSを用いる事により、CPUの違い、クロックの違い、マザーボードの違いに極

力影響を受けずにプログラム開発が行えるよう、開発効率の改善を図る事を IOCSの目的と

する。

[2]  AKI_H8シリーズの種類：
CPUボードは

(1) H8/3048F（ CPUクロック 16 [MHz] ）

(2) H8/3052F（ CPUクロック 25 [MHz] ）

(3) H8/3069F-LAN（ CPUクロック 20 [MHz] ）

（ ON Board LANなので基板形状が異なる。）

CPUの種類の違い

  (1) 内部実装メモリ容量の違い

H8/3048F （ ROM : 128K , RAM :  4K ）

H8/3052F （ ROM : 512K , RAM :  8K ）

H8/3069F （ ROM : 512K , RAM : 16K ）

  (2) フラッシュROM 書き込み方法の違い

（ プログラムには影響しない。）

  (3) CPUクロックが異なるとシリアル通信のボーレイトに影響する。

マザーボードは

(1) ベーシックな マザーボード

DIPスイッチ、押しボタンスイッチ、発光ダイオード、液晶表示器

の I/Oが付いたもの。（ CPUモード７で動作させる事を想定 ）

(2) AKI-H8-USB基板

DIPスイッチ、押しボタンスイッチ、発光ダイオード、液晶表示器

に ＵＳＢのインタフェースが実装されたもの。

USBの周辺回路を接続するため、アドレスバス、データバスを出力

させているため、ベーシックなI/Oの点数、及び I/O端子のピン

アサインが、マザーボードとは異なる。



- 4 -

[3]  メモリ容量の違いによる、プログラムへの影響：

　マイコンのメモリは、ROMと RAMに大別される。

RAMは、プログラムにて自由に読み書き可能であるが、ROMは、固定的なプログラムや定数

のエリアであり同じメモリでも使い方が異なる。　また、また容量も制限がある。

H8シリーズでは、ROMに比べ、RAMの容量が小さいためこのあたりの配慮は必要となる。

　パソコンの場合、全て RAMであり、またマイコンと比べると大量のメモリが実装されて

いるため、ROM、RAM等の配置位置の考慮や、オブジェクトサイズを意識する必要もない。

　マイコンのプログラムを作成する際に意識するのは、プログラムのどの部分を、ROMに配

置するか、どの部分をRAMに配置するかである。　H8シリーズの場合、ROM容量が大きいた

め通常のファーム用途であれば、不足するという事はまずないと思われる。　

　RAMは、CPUにより、4K、8K、16Kなので、サイズ的には厳しいものがある。

  ROMは、H8シリーズの、どのCPUにおいてもメモリ空間の先頭（ 0番地 ）から配置され

ているので、CPUの違いによる ROMの開始位置の違いはない。

ＣＰＵのアーキテクチャに関わる事として、ROMの先頭は割り込みベクトルエリアとして使

用される。　通常　ROMエリアには、割り込みベクトル、プログラムのコード領域、定数、

変数の初期値等が置かれる。　

　H8シリーズの RAMは、アドレス空間の最後に配置されるため、RAMの最終アドレスは、

同じとなるが、開始アドレスは、RAMのサイズにより変わることになる。

またＣＰＵ動作モードにより、アドレス空間が、１Mbyte、16Mbyteと異なるため、RAM配

置アドレスも 絶対値が異なる。

　RAMも通常、先頭アドレスから順に変数やバッファ領域を確保していく。

スタックエリアだけが、最終アドレスから若い番地に向い使用される。

よって、静的変数、バッファ等の開始アドレスはCPUの違いによるRAM容量の違いを受け

る。　スタックポインタの初期設定は、RAM容量の影響は受けない。

ROM 128K

ROM 512K

0H

10000H

20000H

30000H

40000H

50000H

60000H

70000H

80000H

H8/3048F
H8/3052F
H8/3069F

ベクトル領域 ベクトル領域
0H

10000H

20000H

30000H

40000H

50000H

60000H

70000H

80000H

100H 100H
ROM先頭部分にプログラム

を配置するので、

プログラムサイズが

数10Kbyteの場合は、

のどちらのROMにおいても

体制に影響は無い。



- 5 -

RAM 8K

RAM 16K

H8/3052F H8/3069F

RAM 4K

H8/3048F

FEF10H

FFF0FH
内部I/Oポート 内部I/Oポート 内部I/Oポート

FFFFFH

FDF10H

FFF0FH

FFFFFH

FBF10H

FFF0FH

FFFFFH

　上記の16進アドレス値は、ＣＰＵモード５，７（ アドレス空間 1[Mbyte] ）の場合で

ありモード６（ アドレス空間 16[Mbyte] ）の場合の RAM配置アドレスは、頭に Fが付い

た 6桁となる。（例： RAM終端アドレスは、FFF0FH --> FFFF0FH ）

　当然、モード５（アドレス空間 1[Mbyte]）と、モード６（アドレス空間 16[Mbyte]）

では、同じＣＰＵでも ＲＡＭ開始アドレスは異なるアドレスに配置される。

H8/3048Fの場合、

モード５の場合 RAM開始アドレスは  FEF10Hであり、

モード６の場合 RAM開始アドレスは FFEF10Hになる。

（ モード５及び ７において、命令のオペランドで 6桁のアドレスを指定しても、上位

4bitは無視されるので、FEF10Hで指定しても、FFEF10Hで指定しても同じ結果となる。

  しかし、モード６においては、FEF10Hと FFEF10Hを区別するので FEF10Hでは RAMをア

クセス出来ない。）

　RAMの場合は、サイズの違いにより先頭アドレスが異なるため、RAMの開始アドレス及び

RAMサイズを意識する必要がある。

スタックは、通常 RAMの最終アドレスに配置するので、スタックポインタの設定は、RAM

の最終アドレスを初期値として設定する。

　スタックのサイズは、実行するプログラムにもよるが、マイコンのシステムであれば

1～2 Kbyte程度でよいと思われる。　アセンブラだけで作られたプログラムの場合はこれ

で十分である。

Ｃで作られたプログラムの場合、Auto変数によってもスタックを消費するので、Auto変数

では、配列データ等の大きなサイズのデータを宣言する事は極力避けなければならない。

　あとは、どの程度サブルーチンや割り込み処理がネストするかを考慮してスタックサイ

ズを決める必要がある。（ ちなみに昔の MS-DOSのＣコンパイラは、2048byteが標準のス

タックサイズであった。 ）

FFEF10H

FEF10H

ポインタ値

RAMをアクセス可能

RAMをアクセス可能

Mode5、Mode7
( 1 Mbyte Address )

RAMをアクセス可能

RAMをアクセス不可能

Mode6
( 16 Mbyte Address )



- 6 -

[4]　ＣＰＵクロックによる違い：

　ＣＰＵクロックがプログラムに与える影響は、単に実行速度が速い遅いだけの問題では

ない。　ＣＰＵのクロックを分周してタイミングを作り出している内部周辺回路があり、

そのタイミングに影響を与える。

　最も問題となるのは、シリアル通信のボーレイトジェネレータである。

ＣＰＵのクロックが早くなれば、比例してボーレイトも上がってしまうため、外部機器と

正常に通信ができなくなる。

　このため、ボーレイトをＣＰＵのクロック数に影響を受けず一定の値を保つように、各

ＣＰＵクロックに応じた分周値テーブルを用意する必要がある。

　その他、インターバルタイマーにおいても同様の事が発生する。

ＣＰＵクロックを早くすればインターバルタイマーの周期も早くなるので、タイマーで時

間を計ったりしている場合は要注意である。

よって経過時間のカウント用途でタイマーを使用する場合も、クロック毎に分周値を設定

する必要がある。

今回、ＣＰＵクロックの種類は、16MHz、20MHz、25MHzの３種類とする。

その場合に、タイマー発振周波数から １[MHz]を得る場合、

25 [MHz]は  1/25、

20 [MHz]は  1/20、

16 [MHz]は  1/16 となる。

　タイマーの係数として水晶発振器の周波数から １[MHz]を得るための分周値を　用意し

ておく。

[5]　秋月マザーボードの違い：

　初期のマザーボードは、DIPスイッチ、押しボタンスイッチ、発光ダイオード、液晶表示

器の I/Oが付いたもので、CPUモード７で動作させる事を想定していた。

　AKI_H8＿USB基板にも、DIPスイッチ、押しボタンスイッチ、発光ダイオード、液晶表示

器の I/Oが付いている。　しかし、それらが接続されているＣＰＵの端子に互換性がな

い。

　もちろんもっと大きな違いとして、ＵＳＢの周辺回路が実装されている。

あるいは、ＬＡＮの周辺回路が実装されている等があるが、これらは各ボードで排他的要

素であり、ソフト的にみると、ＵＳＢやＬＡＮそれだけで大きなモジュールとなり得るの

で基本的な共通I/Oには含めない事とする。

　ここでは、マザーボードと、AKI_H8_USBの間で、DIPスイッチ、押しボタンスイッチ、

発光ダイオード、液晶表示器を同等に扱えるようなインタフェースを用意することにす

る。

ただし、実装されているDIPスイッチのビット数や、AKI_H8_USBでは、液晶表示とLEDの

ポートが共通になっているなどの問題があり全く同等には扱えない。



- 7 -

[6]　仕様の違いを吸収する取り決め：

(1)  ROM先頭アドレスは、CPUの種類、動作モードに関わらず 0 番地から始まる。

     よって、割り込みベクトルテーブル、プログラムコードの開始アドレスは

     固定と考えてよい。

＜分ける必要なし＞

(2)  CPUの動作モードによる RAM配置アドレスの違いは、CPUモード５，７においても

     絶対アドレスを指すオペランドは、24bitで扱う。

（ これにより動作モードによる RAM、I/Oポートのアドレスの違いを

吸収できる。）

＜分ける必要なし＞

(3)　RAMの開始アドレスは、各CPUのRAM容量の違いにより開始アドレスがずれている

     ため、CPUの違いにより、RAMの開始アドレスを定義する必要がある。

＜ CPU毎（ 3048, 3052, 3069 ）に設定する必要あり、

 　設定そのものは、１行で済むため 共通ソース内に３行用意して

   そのうちの１つを生かし他の２つはコメントにする形で対応する。＞

共通ソース名（ define_H8.src ）

例）H8/3048を有効にした場合：

ram_head  .EQU h'FFFE10 ; H8/3048F

; ram_head  .EQU h'FFDF10 ; H8/3052F

; ram_head  .EQU h'FFBF10 ; H8/3069F

(4)　ＣＰＵクロックに依存する要素への対応。

　   ボーレイトジェネレータの分周値と、インターバルタイマ用に水晶発振周波数

　　 から １[MHz]を作り出す分周値を、CPU各周波数（ 25MHz、20MHz、16MHz ）毎に

     分けて用意する。これは、３本のソースを用意する。

ソース名： cpu_16.src （ 16 MHz用 分周値定義ファイル ）

cpu_20.src （ 20 MHz用 分周値定義ファイル ）

cpu_25.src （ 25 MHz用 分周値定義ファイル ）

(5)  マザーボードに付属する動作確認用途の I/Oを、マザーボード、AKI_H8_USB基板

     にて極力同様に使えるようにする。

ソース名： aki_mbio.mar （ マザーボード用 ）

aki_usbio.mar （ AKI_H8_USB基板用 ）

  　拡張子に、src と mar を 使っているが 使い分けは、

  src を 定数定義ファイル（ヘッダファイル）として使用し、

  mar を コード実装部ファイルとして使用している。



- 8 -

[7]　共通基本モジュールのファイル構成：

　H8のアセンブラ A38H.exe は インクルード機能や、マクロ機能がないため、あるファ

イル内の任意位置に別ファイルを取り込む処理や、行の置き換え、if文による アセンブル

制御を行う事が出来ない。

　よってインクルードと同等の処理を行うためには、ソースファイルを連続して複数本読

み込ませ、１本のオブジェクトを生成する方法を用いる。

　その場合、読み込ませる順番を意識する必要がある。

define_H8.src
H8シリーズCPUの内部I/Oのポートアドレス等の定義ファイル

（ ram_head 定義 含む ）

cpu_16mhz.src 16 [MHz] ＣＰＵのカウンタ分周値定義ファイル

cpu_20mhz.src 20 [MHz] ＣＰＵのカウンタ分周値定義ファイル

cpu_25mhz.src 25 [MHz] ＣＰＵのカウンタ分周値定義ファイル

aki_mbio.mar 秋月マザーボード 基本I/Oルーチン

aki_usbio.mar AKI_USB基板 基本I/Oルーチン

Rst_Int.mar
割り込みテーブルと、リセット処理と割り込み処理、

ＣＰＵ内部 周辺回路処理

どれか
一つ選
択する

どちら
か一つ
選択す
る

ソースファイル名 説明

ram_head.mar 共通モジュール用変数エリア宣言

  define_H8.src 、cpu_16mhz.src 、cpu_20mhz.src 、cpu_25mhz.src は、コードの

実態を生成しない、値の定義ファイルのみである。

  Rst_Int.mar 、aki_mbio.mar 、aki_usbio.mar 、ram_head.mar コードや変数等の

オブジェクトの実体を宣言するソースファイルである。

　Rst_Int.mar 、aki_mbio.mar 、aki_usbio.mar は、ROM上に配置され、

ram_head.marは RAM上に配置される。

　この中で Rst_Int.mar は、割り込みベクトルテーブル、Ｃ言語の main を呼び出すた

めのスタートアップ処理等、固定アドレスを含む処理を行っている。

  その他、Ｈ８ＣＰＵに内蔵される I/Oのうちシリアル通信とタイマーを一部サポートし

ている。



- 9 -

[8]　アセンブルの順序：

define_H8.src

cpu_16.src cpu_16.srccpu_16.src

Rst_Int.mar

aki_mbio.mar aki_usbio.mar

(1)

(2)

(3)

(4)

３つのうちどれか
一つをアセンブル
する。

２つのうちどちらか一つ
をアセンブルする。

ram_head.mar(5) 変数、バッファの宣言

定数定義

スタートアップ処理
（ サブルーチン含む ）

[9]　ソースとオブジェクトの関係：

　以下のソースファイルを、連結、選択アセンブルする事により、オブジェクトファイル

（ Rst_Int.obj ）を生成する。

　Rst_Int.objは、Ｃオブジェクトのスタートアップモジュールなので、次の作業として

このRst_Int.objと Ｃで記述されたメイン、及びサブルーチンをリンカで連結し実行モ

ジュールを生成する。



- 10 -

define_H8.src

cpu_16.src

cpu_16.src

cpu_16.src

Rst_Int.mar

aki_mbio.mar

aki_usbio.mar

２つのうちどちら
か一つをアセンブ
ルする。

A38H.exe
アセンブラ

Rst_Int.obj

３つのうちどれ
か一つをアセン
ブルする。

 ソースは、８本あるが、連結アセンブルす
るソース本数は５本である。
 これにより、１本のオブジェクト
Rs_Int.obj を 生成する。

[10]　アセンブルのバッチファイル例（ rst.bat ）：

 rem ★　H8/3048 ＋ AKI_MB
 a38h define_h8,cpu_16mhz,Rst_Int,aki_mbio,ram_head -object=Rst_Int >err.txt

 rem ★　H8/3052 ＋ AKI_USB
 rem a38h define_h8,cpu_25mhz,Rst_Int,aki_usbio,ram_head -object=Rst_Int >err.txt

 type err.txt

  この中で、ＣＰＵの種類、基板の種類で変更になるものは、

(1) define_H8.src内の ram_headの定義

(2) cpu_16mhz  （ CPUのクロックにより cpu_20、cpu_25に置きかえる。 ）

(3) aki_mbio （ AKI_H8_USB基板を使用する場合は aki_usbio に置きかえ

る。 ）

ram_head.mar



- 11 -

[11]　ターゲット環境を切り換える際の作業：

　最初のデバッグの際は、モニターデバッガで、RAM上でデバッグしていて、本番のROM版

オブジェクトを生成する際に変更する個所。

(1)  プログラムコードのスタートアップ部分を RAM -> ROM に配置し直す。

define_H8.src 内の vct_offsetの変更

（ 使用しない方を ; でコメント化する。 ）

 vct_offset .EQU h'0 ; 通常の ROMベクタオフセット
 ;vct_offset .EQU h'FFF000 ; 仮想ＲＡＭベクタオフセット

(3)　リンカに渡すパラメータファイル（ *.sub ）内にて Ｃ言語で使用する

     コード、データ領域の配置情報を変更する。

     ROMに配置する場合：

START P(000200),C(002500),B(0FFF000)

     RAMに配置する場合：

START P(0FFF200)

リンカへ渡すパラメータファイルの例（ test.sub ）

 INPUT rst_int, test
 OUTPUT test
 PRINT test
 LIB ¥aki_h8¥c¥c38hab
 START P(000200),C(002500),B(0FFF000)
 EXIT

(2)  Rst_Int.obj 生成用バッチファイル rst.bat の内容も CPUクロック及び、

     使用マザーの種類に合わせる。（ 詳細は前ページ参照の事 ）

     rst.bat を実行し 変更した Rst_Int.objを生成する。　

     リンカパラメータ（ ?.subファイル ）を変更して、

     リンク、コンバート作業を実行し、Sフォーマット16進ファイルを生成する。

尚、リンクパラメータの STARTパラメータは、プログラムのサイズ、使用ＣＰＵにより

変更する方が望ましい。

　B(??????)は、実質RAMの開始アドレスになるが、FFF000は H8/3048の場合であり

3052、3069でもそのままで動作するが、RAMを有効利用しているとはいえない。

RAMを大量に使用する場合は、調整の必要性が生じる。

及び、 C(??????) の値もコードサイズが巨大になった場合は、調整が必要となる。



- 12 -

[12]　ターゲットモジュールが変更されない場合：

　ソースモジュール、及びコンパイル、リンクのパラメータを変えてターゲットモジュー

ルを再構築しているにもかかわらず書き換わってないような場合が発生する場合がありま

す。

　現象としては、デバッグのためROM版から、RAM版に変更した際に MOTファイルを転送す

ると、0 番地から転送を始めていたり、あるいは、デバッガで 逆アセンブルすると、内容

が 明らかに変だったり訳の無からない現象が発生する場合がまれにあります。

　当方で確認した現象としては、MOTファイルが何らかのタイミングで、ファイルオープン

中のままになってしまい、排他制御によりファイルを書き換える事が出来なくなる現象を

２回ほど確認しました。

この状態になると、MOTファイルを更新できないため、修正内容がターゲットに反映されな

くなる。　MOTファイルを消す事も出来ないのでその場合は、開発用パソコンを再起動する

しかありません。

　再構築する際は、拡張子が、OBJ、ABS、MOT、MAP、LIS のファイルを削除する

バッチファイルを用意して削除に成功したのを確認してから、再構築を行うほうが

いいと思われます。



- 13 -

[A]　H8/3048と H8/3052の 書き込み時の電圧：

  書き込みに関わる端子は、VPP(FWE)と MD2の２つである。

[B]　AKIマザーの改造：

　AKIマザーボードにおいて、H8/3048と H8/3052の両方の書き込みに対応出来るような改

造を行う場合はどのようにするかを検討する。

　まず、旧マザーにおいては、8.VPPと 9.MD2がコネクタ部パターンで接続されている

ためこれをパターンカットする必要がある。

  次に以下のようなスイッチによる切換を行えばよいと思われる。

8
VPP

9
MD2

CN4 8,9間の
パターンを
切断する。

Write

Normal

Write SW

3048

3052

CPU SEL SW
+12V

+5V

Write

Normal

3052

3052

3052

3048

3048

3048

VPP　WR

VPP　Normal

MD2 WR

MD2 Normal

8 PIN
VPP ( FWE )

9 PIN
MD2

書き込み時

通常時

H8/3048F

H8/3052F

+12V

+5V

+12V

GND

NC NC

GND NC



- 14 -

[C]　C と アセンブラのインタフェース：

　Ｃ言語から、アセンブラのルーチンを呼び出す場合に、引数と関数値の引渡しをどのよ

うに行うかを明確にしておく必要がある。

　渡す引数が、4 byte以内の整数、ポインタの場合、

第１引数が ER0レジスタ、第２引数が ER1レジスタにて渡される。

関数値は、4 byte以内の整数、ポインタの場合、ER0レジスタが 使用される。

　Ｈ８のＣコンパイラでは、 int で宣言された変数は、16 bit で 扱われるようで

引数で渡す場合、R0 または、R1にて渡され、 関数値も R0 にて 渡される。

  プロトタイプが宣言されてない場合（ 引数の型の宣言が無い場合 ）は long として

扱われ、ER0、ER1で引数は 渡される。

  ３番目以降の引数が有る場合は、スタック上に引数は、積み上げられる。

この場合、Word の データは、 push.w で 積み上げられ、

long の データは、push.l で 積み上げられる。

（ byteのデータは、　Word として積み上げられると思われる。 ）

注意：

　引数が３つ以上あっても、ER0、ER1に 詰め込む事が可能であれば

詰め込む仕様になっている。

引数が全て byteの場合： dummy( char, char, char, char )

        R0L、 R0H、 R1L、 R1H

引数が全て int の場合： dummy( int,  int,  int,  int )

        R0、　E0、　R1、　E1

混在引数の例１： dummy( char*, int, int )

ER0、  R1、 E1

混在引数の例２： dummy( char, int, char, char )

R0L、E0、 R0H、 R1L

混在引数の例３： dummy( char*, char*, int )

ER0、 ER1、 push.w

エントリ直後の、３番目の引数位置は ER7 + 4

混在引数の例４： dummy( char*, char*, int,    int )

ER0、 ER1、 push.w、push.w

エントリ直後の、３番目の引数位置は ER7 + 4

エントリ直後の、４番目の引数位置は ER7 + 6



- 15 -

[D]　Ｃの初期化処理：

　アセンブラのスタートアップルーチンから、Ｃ言語にて作成された _mainを

呼び出しているが、_mainの エントリ部分で暗黙に呼び出される処理が存在する。

但し、これは main関数あるいは、Ｃプログラムの大きさにより変わるようで

極めて小さなmain関数の場合、生成されない。

少しmain関数の記述が増えると、R6レジスタがプッシュされてから処理が開始される。

更に main関数の記述が増えるとスタックを操作するサブルーチンが呼び出される。

スタック操作のサブルーチンは ER5、ER4、ER3、ER2 をスタックに積み上げたまま

リターンするようになっている。（ コンパイラが処理を行う上で必要となる内部変数（レ

ジスタ変数）を確保するための処理と思われる。）

この、３段階の暗黙のエントリ処理はどのような判断で挿入されるかは不明。

main関数の大きさの表現は、感覚的であるが以下の状況を確認した。

極小の _main 小の _main 中小の _main

PUSH.W   R6 JSR   ????

PUSH.L   ER5

PUSH.L   ER4

PUSH.L   ER3

PUSH.L   ER2

MOV  (ER7+10H)->ER2

MOV  ER6->(ER7+14H)

MOV  (ER7+14H)->ER2

RTS

戻り
Address

ER5

ER4

ER3

ER2

ER2
(Ret Address)

FFF10

FFF0C

FFF08

FFF04

FFF00

FFEFC

FFEF8

1

1

PUSH.L   ER2

2

中小の _mainの
スタック内容

　ER6 の 内容を、サブルーチンの
（元の）戻りAddress（ FFF0C ）に
書き込み、その値を再度、ER2に読み
込み直している。

2



ＰＣターミナル側

- 16 -

[E]　ターミナルの [BackSpace] 処理：

  ターミナル処理にて文字を入力し間違えた時に、[BackSpace] Keyにて訂正出来るが、

ただ単に [BackSpace] Keyをエコーバックするだけでは バックスペースの動作にならな

い。

　まずは、パソコンのターミナルソフト側にてどのようなコードが出力されるのか確認す

る必要がある。　調査した結果は、

[BackSpace] ＝ 08H

[↑]  ＝ 1AH

[↓]  ＝ 1AH

[→]  ＝ 1AH

[←]  ＝ 1AH

[Esc] ＝ 1AH

　矢印 key や [Esc] key は 区別がつかないので 無視した方が良いと思われる。

パソコンのターミナル画面上に 08Hを返すと、カーソルポジションは、一つ左に戻るが

カーソル位置の文字は消えない。

　[Back Space] Key 押下時、カーソル位置の文字が消えるようにするには、その位置で

スペースコードを１文字出力して文字を消し、再度 08H を 出力する事によりカーソル位

置を戻す。

マイコン側での処理：

入力： 08H

に対するエコーバック処理は

出力： 08H、20H、08H の ３byte 出力する。

Back
Space

マイコン側

08H
押下

受信

エコーバック処理
送信

08H 20H 08H

08H 20H 08H

エコーバック受信
画面出力



- 17 -

[F]　モトローラＳフォーマット（ 16進ファイル ）：

  Ｈ８に関わるユーティリティは、Ｈ８マイコンに転送するファイルとしてモトローラＳ

フォーマットを採用している。

　自前でローダなどを作成する場合はＳフォーマットの内容を理解しておく必要がある。

Ｓフォーマットファイルの例

S00E00006C656420202020204D4F542D
S107000000000100F8
S11301007A07000FFF10F8FF38C87FCA70007FCA54
S113011072107A01000F42401B7146FC7FCA7200C5
S11301207FCA70107A01000F42401B7146FC5A00CF
S1050130010ABF
S9030100FC

S1 13 0100 7A 07 00 0F FF 10 F8 FF 38 C8 7F CA 70 00 7F CA 54

データ（ 16 byte ）

アドレス

レコード長

レコードタイプ

チェック

サム

S0

レコードタイプ

（先頭は必ず S ）

スタートレコード

S1 データレコード（ 16 bit アドレス ４文字で指定 ）

S2 データレコード（ 24 bit アドレス ６文字で指定 ）

S3 データレコード（ 32 bit アドレス ８文字で指定 ）

S4 シンボルレコード（ LSI拡張 ）

S5 今までに出てきたデータレコード数

S6 未使用

S7 Ｓ３フォーマット（ 32bitアドレス ）の終了

S8 Ｓ２フォーマット（ 24bitアドレス ）の終了

S9 Ｓ１フォーマット（ 16bitアドレス ）の終了

レコード長
以下に続くレコードで表されるデータの数（ Byte数 ）を２文字で示す。

（ レコード長、アドレス、データ 部が 対象となる。）

アドレス
SIレコードは 4 文字 、S2レコードは 6 文字、S3レコードは、8 文字にて

格納されるアドレスを 指定。

データ ２文字で、1 byteの データを 表す

チェックサム

２文字（ 1 byte ）のデータ。

レコード長、アドレスフィールド、データフィールドの各バイト値の

合計の２の補数

（ インターネット上の資料では、１の補数としてある資料もあった。 ）



- 18 -

[G]　Word、DWord変数の配置アドレスの注意：

  インテル手巣 i86系ＣＰＵの場合は、あまり問題にならなかったが、Ｈ８シリーズのＣ

ＰＵの場合、プログラムも、Word、DWord変数に関しても、Word境界を意識しなければな

らない。　つまり、必ず偶数アドレスに配置する必要がある。

　これを、怠って配置された Wordデータをアクセスする際に、その変数が奇数アドレスに

配置されていると、1 byte若いアドレス（アドレス情報の最下位 bit が切り捨てられた

状態）になり、隣り合う変数の値を取り込んだり壊したりする恐れがある。

具体的には、ａというWord変数が、３番地に配置されていた場合は、２番地をアクセスし

てしまう現象が発生する。

基本的に Wordマシン（ 16bit幅でメモリアクセスする ）なので Word、DWordの変数

は、Word境界に配置する。

1 番地0 番地

3 番地2 番地

5 番地4 番地

7 番地6 番地

1 番地0 番地

3 番地2 番地

5 番地4 番地

7 番地6 番地

Word変数を、３番地（奇数アドレス）
に配置した例。

Word変数を、２番地（偶数アドレス）
に配置した例。

上のように変数が、Word境界を跨ぎ段
違い状に配置された場合に、
2,3番地をアクセスする事になる。

[H]　割り込み、例外処理発生時のスタック：

スタック領域 スタック領域

CCR

PC (E)
PC (H)
PC (L)

SP-4

SP-3

SP-2

SP-1

SP (ER7)

SP (ER7)

SP +1

SP +2

SP +3

SP +4



- 19 -

[I]　Ｃ言語の 初期化変数の ROM化における注意点：

  RAM上でデバッグしていた時には、正常に動作していたのに、ROM化のためアドレスを変

更しROMにプログラムを焼き込み、実行Dすると動作がおかしい。

という現象が発生する場合がある。

　これは、初期化されているはずのデータが初期化されない状態で実行した場合の症状と

して現れる。

　アセンブラでプログラムを作成する時は、ROM,RAMを意識してプログラムを作成するの

でこの現象は起こりにくいがＣの場合、どこまでがROMに配置され、どこからがRAMに配置

されるかが、コーディング上では直接見えない。

　基本的に変数は、RAMに配置される。　その中で、Ｃの文法上変数の宣言と初期化が同時

に行えるようになっているがこれが問題となる。

デバッグ時、ターゲットプログラムをRAM上にロードしそのまま実行するばあいは、初期化

される変数の値もそのまま、RAMに転送されて、その状態で実行する関係上、初期化される

べき変数の値が正常に初期化されている。

　しかし、書き込みモードで、ターゲットプログラムをROMに書き込み、一旦電源を切っ

て、VPP(WE)のOFF、ＣＰＵモードのジャンパーによる切換えを行い、再度電源ＯＮすると

ROM上のプログラムコードは、残っているがRAM上の変数は初期化されない状態になってい

る。

　この現象を回避するには、２通りのやり方があり、一つは、リンカのパラメータで、

Ｒセクションを宣言する事により、どうにか出来るらしいが詳しい説明がない。

　もう一つの方法は、変数の宣言と初期化を同時に行わない事。

①　変数の宣言だけ行う。

②　初期化処理（ 実行文 ）の中で、変数に 定数を代入する。

（ 定数は、書き換えられる事がないので、ROM上に配置される。 ）

 static char *msg = "Test Program";
 static int no = 20;

ROMに焼き込んでから、正常に動作しないコーディング例：

 static char *msg; /*  変数は宣言のみ行い、ここでは */
 static int no; /*  初期化は、行わない事 */

 /*  初期化ルーチン */
 void  syokika( void )
 {

msg = "Test Program"; /*  初期化処理の実行段階で */
no = 20; /*  初期値を代入する事 */

 }

上記の場合は、このように変更する。



- 20 -


