
Ｈ８シリーズ用
ＩＯＣＳ関数マニュアル

2003年3月30日

　　　　　　　　　　　目　　次

01-01 enable_interrupt （ 割り込み許可 ）

01-02 disable_interrupt （ 割り込み禁止 ）

01-03 get_cpu_mode （ CPU動作モード取出し ）

01-04 trap_0 （ トラップ生成 ）

01-05 setup_wdt （ WDTの 起動 ）

01-06 stop_wdt （ WDTの 停止 ）

01-07 refresh_wdt （ WDTの リフレッシュ ）

01-08 check_reset （ リセット要因の確認 ）

02-01 rs0_open （ RS-232C ch.0 オープン ）

02-02 rs0_close （ RS-232C ch.0 クローズ ）

02-03 rs0_send （ RS-232C ch.0 １文字送信 ）

02-04 rs0_count （ RS-232C ch.0 受信文字数 取出し ）

02-05 rs0_recv （ RS-232C ch.0 受信文字 取出し ）

02-06 rs0_prn （ RS-232C ch.0 文字列の送信 ）

02-07 rs0_print （ RS-232C ch.0 文字列＋CrLfの送信 ）

02-08 rs0_input （ RS-232C ch.0 文字列の受信 ）

02-09 rs0_input_echo （ RS-232C ch.0 文字列の受信エコー有り ）

02-11 rs1_open （ RS-232C ch.1 オープン ）

02-12 rs1_close （ RS-232C ch.1 クローズ ）

02-13 rs1_send （ RS-232C ch.1 １文字送信 ）

02-14 rs1_count （ RS-232C ch.1 受信文字数 取出し ）

02-15 rs1_recv （ RS-232C ch.1 受信文字 取出し ）

02-16 rs1_prn （ RS-232C ch.1 文字列の送信 ）

02-17 rs1_print （ RS-232C ch.1 文字列＋CrLfの送信 ）

02-18 rs1_input （ RS-232C ch.1 文字列の受信 ）

02-19 rs1_input_echo（ RS-232C ch.1 文字列の受信エコー有り ）

03-01 init_timer（ インターバルタイマ初期化 ）

03-02 set_timer1（ 減算タイマカウンタ 値設定 ）

03-03 get_timer1（ 減算タイマカウンタ値 読出し ）

03-04 set_timer2（ 加算タイマカウンタ 値設定 ）

03-05 get_timer2（ 加算タイマカウンタ値 読出し ）

03-06 wait_milli（ [ms]単位の時間待ち処理 ）

03-07 enter_tm_proc（ 追加タイマー割込み処理の登録 ）

03-08 off_tm_proc（ 追加タイマー割込み処理の停止 ）

04-01 b_heex1_cat（ 4bit値を 16進１文字で文字列に追加格納 ）

04-02 b_heex1（ 4bit値を 16進１文字で文字列に格納 ）

04-03 b_heex2_cat（ byte値を 16進２文字で文字列に追加格納 ）

04-04 b_heex2（ byte値を 16進２文字で文字列に格納 ）

04-05 w_hex4_cat（ word値を 16進４文字で文字列に追加格納 ）

04-06 w_hex4（ word値を 16進４文字で文字列に格納 ）

　　　　　　　　　　　目　　次

04-07 dw_hex6_cat（ dword値を 16進６文字で文字列に追加格納 ）

04-08 dw_hex6（ dword値を 16進６文字で文字列に格納 ）

04-09 dw_hex8_cat（ dword値を 16進８文字で文字列に追加格納 ）

04-10 dw_hex8（ dword値を 16進８文字で文字列に格納 ）

04-11 bin_hex_block（ byte配列を 16進文字列に変換し格納 ）

04-12 check_hex_str（ 16進文字列の 構成文字チェック ）

04-13 hex1_b（ 16進１文字を byte値（下位 4bit有効）に変換し返す ）

04-14 hex2_b（ 16進２文字を byte値に変換し返す ）

04-15 hex4_w（ 16進４文字を word値に変換し返す ）

04-16 hex6_dw（ 16進６文字を dword値に変換し返す ）

04-17 hex8_dw（ 16進８文字を dword値に変換し返す ）

04-18 hex_bin_block（ 16進文字列を byte配列に指定 byte数 変換格納 ）

05-01 oomoji（文字列内の 英小文字を 大文字に変換格納 ）

05-02 komoji（文字列内の 英大文字を 小文字に変換格納 ）

05-03 mem_copy（ メモリ間コピー処理 ）

05-04 str_len（ 文字列長の取得 ）

05-05 str_copy（ 文字列のコピー ）

05-06 strn_copy（ 文字列のコピー：長さ制限付き ）

05-07 str_cat（ 文字列の連結 ）

05-08 nulls（ 文字列内を Nullコードで埋める ）

05-09 spaces（ 文字列内を スペースコードで埋める ）

05-10 fspdel（ 文字列先頭部分のスペース取り除き ）

05-11 bspdel（ 文字列後ろ部分のスペース取り除き ）

05-12 str_cmp（ 文字列の比較 ）

05-13 strn_cmp（ 文字列の比較、文字数制限付き ）

05-14 instr（ 文字列内の部分文字列サーチ ）

05-15 left_instr（ 文字列左端の部分文字列比較 ）

05-16 w_ascii（ 整数を、符号なし10進文字列に変換する ）

05-17 w_asciif（ 整数を、符号なし10進文字列に変換 桁数指定有り ）

08-01 init_aki_mb （ AKI マザーボード基本I/O 初期化 ）

08-02 init_mb_lcd （ AKIマザーに接続されるLCDの初期化 ）

08-03 get_mb_dipsw（ AKIマザーの DIP-SW 値読出し ）

08-04 get_mb_myadr（ DIP-SW 4bitによるアドレス文字取出し ）

08-05 put_mb_led （ LEDポート出力 ）

08-06 set_mb_led_ontime （ LED点滅処理の 点灯時間設定 ）

08-07 flash_mb_led（ LED点滅処理の 更新表示処理 ）

08-08 set_mb_lcdsw（ LCDの出力処理の有無スイッチ設定 ）

08-09 erase_mb_lcd（ LCDの表示内容 消去 ）

08-10 print_mb_lcd（ LCDに文字列を出力する ）

　　　　　　　　　　　目　　次

 分類番号：01-01

説明：

機能：
CPUの割り込みマスクを解除し、割り込みを許可する。

　ソースファイル： Rst_Int.mar

関数プロトタイプ宣言：

void enable_interupt(void);

説明：

機能：
CPUの割り込みマスクをセットし、割り込みを禁止する。

　ソースファイル： Rst_Int.mar

関数プロトタイプ宣言：

void disable_interupt(void);

 分類番号：01-02

 分類番号：01-03

説明：

関数値：　1 ～ 7 の値を返す。
CPUの動作モードについては、Ｈ８のマニュアルを参照の事。

機能：
CPUの動作モードの取出し

　ソースファイル： Rst_Int.mar

関数プロトタイプ宣言：

int get_cpu_mode(void);

説明：

Ｈ８シリーズＣＰＵでは、命令によりトラップを生成する事が出来る。

トラップは、４つのベクトルが用意されている。

よって、 trap_0() 以外に trap_1(), trap_2(), reap_3() がある。

割り込みベクトルとの関係は

trap_0() 8 h'0020

trap_1() 9 h'0024

trap_2() 10 h'0028

trap_3() 11 h'002C

機能：
トラップを生成する。（ ソフトによる割り込み処理 呼び出し ）

　ソースファイル： Rst_Int.mar

関数プロトタイプ宣言：

void trap_0(void);

 分類番号：01-04

 分類番号：01-05

説明：

Ｈ８ＣＰＵのＷＤＴを起動する。
この関数を呼び出した後は、周期的にドッグタイマーを refresh_wdt(); にて リフレッシュ
しなければ、ＣＰＵリセットが発生する。
ドッグタイマのタイムアップ時間は、ＣＰＵクロックに依存し

16[Mhz]で 1/16 [秒]（ 62.5[ms] ）
20[Mhz]で 1/20 [秒]（ 50[ms] ）
25[Mhz]で 1/25 [秒]（ 40[ms] ） となる。

これより短い周期で、リフレッシュ動作を続けなければＣＰＵリセットが発生する。

機能：
ウォッチドッグタイマーの起動

　ソースファイル： Rst_Int.mar

関数プロトタイプ宣言：

void setup_wdt(void);

説明：

Ｈ８ＣＰＵのＷＤＴを停止する。

機能：
ウォッチドッグタイマーの停止

　ソースファイル： Rst_Int.mar

関数プロトタイプ宣言：

void stop_wdt(void);

 分類番号：01-06

 分類番号：01-07

説明：

ドッグタイマのタイムアップ時間は、ＣＰＵクロックに依存し

16[Mhz]で 1/16 [秒]（ 62.5[ms] ）
20[Mhz]で 1/20 [秒]（ 50[ms] ）
25[Mhz]で 1/25 [秒]（ 40[ms] ） となる。

これより短い周期で、リフレッシュ動作を続けなければＣＰＵリセットが発生する。

16桁、2行のＬＣＤ表示を行ったらドッグタイマーにひっかかった。
やや、時間のかかる処理には、気を付ける事。

機能：
ウォッチドッグタイマーのリフレッシュを行う

　ソースファイル： Rst_Int.mar

関数プロトタイプ宣言：

void refresh_wdt(void);

説明：

ＣＰＵのリセット要因が、リセット端子によるものか、ＷＤＴのタイムアップにより発生した

ものであるかを調べるための関数。

関数値： = 0 : リセット端子によるもの

= 80H : ＷＤＴのタイムアップによるもの

機能：
ＣＰＵのリセット要因を調べる。

　ソースファイル： Rst_Int.mar

関数プロトタイプ宣言：

int check_reset(void);

 分類番号：01-08

 分類番号：02-01

説明：

引数 1: bps は ボーレイトの値（ 以下の値を取る ）
（ 150, 300, 600, 1200, 2400, 4800, 9600, 19200, 31250, 38400 ）

引数 2: fmt は シリアル通信の語構成を指定する文字列（ ３文字にて構成される ）

１文字目：　パリティの指定（ N、E、O ）のどれか１文字
　　　　N = Nonパリティ 、E = Even パリティ 、O = Odd パリティ

２文字目：　データ語長（ 7、8 ）のいずれか１文字
7 = データ長 7 bit 、 8 = データ長 8 bit

３文字目：　ストップビット長（ 1、2 ）のいずれか１文字
1 = ストップ長 1 bit 、 2 = ストップ長 2 bit

例） rs0_open(9600, "N81");

機能：
RS-232C ch.0（ SCI 0 ） のオープン
この関数の呼び出しにより、RS-232C ch.0 が 使用出来るようになる。

　ソースファイル： Rst_Int.mar

関数プロトタイプ宣言：

void rs0_open(unsigned int bps, char *fmt);

説明：

機能：
RS-232C ch.0（ SCI 0 ）のクローズ
この関数の呼び出しにより、RS-232C ch.0 は、停止状態となる。

　ソースファイル： Rst_Int.mar

関数プロトタイプ宣言：

void rs0_close(void);

 分類番号：02-02

 分類番号：02-03

説明：

引数 1： dt 送信を行う１文字（ 1 byteの値 0 ～ 255 ）

機能：
RS-232C ch.0 に対し １文字（ 1 byte ）送信を行う。

　ソースファイル： Rst_Int.mar

関数プロトタイプ宣言：

void rs0_send(char dt);

説明：

関数値： 0 ～ バッファ内最大蓄積個数（ デフォルトバッファサイズ 80 byte ）
0 は 受信文字無しを意味する。

参考：
　受信バッファサイズは、define_H8.src 内に定義されているので、これを変更し
Rst_Intを再構築すれば、バッファサイズは変更可能である。
しかし現在、カウンタが byte変数なので　最大　255 byte までである。

機能：
RS-232C ch.0 の受信バッファ内に蓄積されている文字数の取り出しを行う。

　ソースファイル： Rst_Int.mar

関数プロトタイプ宣言：

int rs0_count(void);

 分類番号：02-04

 分類番号：02-05

説明：

関数値： 受信文字コード（ 0 ～ 255 ）を返す。
受信バッファが 空の場合、-1（ 0xFFFF ） を 返す。

機能：
RS-232C ch.0 の受信バッファから、1文字 取り出す。

　ソースファイル： Rst_Int.mar

関数プロトタイプ宣言：

int rs0_recv(void);

説明：

引数１：　txt : 送信する文字列

機能：
RS-232C ch.0 へ 文字列を送信する。

　ソースファイル： Rst_Int.mar

関数プロトタイプ宣言：

int rs0_prn(char *txt);

 分類番号：02-06

 分類番号：02-07

説明：

引数１： txt 送信する文字列

機能：
RS-232C ch.0 へ文字列を送信する。
その後、CrLfコード（改行コード）を送信する。

　ソースファイル： Rst_Int.mar

関数プロトタイプ宣言：

int rs0_print(char *txt);

説明：

引数１：　buf : １行分の文字列バッファ先頭アドレス

引数２：　len : 最大 文字格納個数（ バッファサイズ ）

参考： Crコードは、Nullコードに置きかえられる。

機能：
RS-232C ch.0 から１行分の 文字列を取り出す。
エコ－バックは行わない。（ デリミッタは、Cr コード ）

　ソースファイル： Rst_Int.mar

関数プロトタイプ宣言：

int rs0_input(char *buf, int lim);

 分類番号：02-08

 分類番号：02-09

説明：

引数１：　buf : １行分の文字列バッファ先頭アドレス

引数２：　len : 最大 文字格納個数（ バッファサイズ ）

参考： Crコードは、Nullコードに置きかえられる。

機能：
RS-232C ch.0 から１行分の 文字列を取り出す。
エコ－バックを 行う。（ デリミッタは、Cr コード ）
[BackSpace] Keyに 対応している。（ Windows / Hyper Terminalに 対応 ）

　ソースファイル： Rst_Int.mar

関数プロトタイプ宣言：

int rs0_input echo(char *buf, int lim);

説明：

機能：

　ソースファイル： Rst_Int.mar

関数プロトタイプ宣言：

 分類番号：02-10

 分類番号：02-11

説明：

引数 1: bps は ボーレイトの値（ 以下の値を取る ）
（ 150, 300, 600, 1200, 2400, 4800, 9600, 19200, 31250, 38400 ）

引数 2: fmt は シリアル通信の語構成を指定する文字列（ ３文字にて構成される ）

１文字目：　パリティの指定（ N、E、O ）のどれか１文字
　　　　N = Nonパリティ 、E = Even パリティ 、O = Odd パリティ

２文字目：　データ語長（ 7、8 ）のいずれか１文字
7 = データ長 7 bit 、 8 = データ長 8 bit

３文字目：　ストップビット長（ 1、2 ）のいずれか１文字
1 = ストップ長 1 bit 、 2 = ストップ長 2 bit

例） rs1_open(9600, "N81");

機能：
RS-232C ch.1（ SCI 1 ） のオープン
この関数の呼び出しにより、RS-232C ch.1 が 使用出来るようになる。

　ソースファイル： Rst_Int.mar

関数プロトタイプ宣言：

void rs1_open(unsigned int bps, char *fmt);

説明：

機能：
RS-232C ch.1（ SCI 1 ）のクローズ
この関数の呼び出しにより、RS-232C ch.1 は、停止状態となる。

　ソースファイル： Rst_Int.mar

関数プロトタイプ宣言：

void rs1_close(void);

 分類番号：02-12

 分類番号：02-13

説明：

引数 1： dt 送信を行う１文字（ 1 byteの値 0 ～ 255 ）

機能：
RS-232C ch.1 に対し １文字（ 1 byte ）送信を行う。

　ソースファイル： Rst_Int.mar

関数プロトタイプ宣言：

void rs1_send(char dt);

説明：

関数値： 0 ～ バッファ内最大蓄積個数（ デフォルトバッファサイズ 80 byte ）
0 は 受信文字無しを意味する。

参考：
　受信バッファサイズは、define_H8.src 内に定義されているので、これを変更し
Rst_Intを再構築すれば、バッファサイズは変更可能である。
しかし現在、カウンタが byte変数なので　最大　255 byte までである。

機能：
RS-232C ch.1 の受信バッファ内に蓄積されている文字数の取り出しを行う。

　ソースファイル： Rst_Int.mar

関数プロトタイプ宣言：

int rs1_count(void);

 分類番号：02-14

 分類番号：02-15

説明：

関数値： 受信文字コード（ 0 ～ 255 ）を返す。
受信バッファが 空の場合、-1（ 0xFFFF ） を 返す。

機能：
RS-232C ch.1 の受信バッファから、1 文字 取り出す。

　ソースファイル： Rst_Int.mar

関数プロトタイプ宣言：

int rs1_recv(void);

説明：

引数１：　txt : 送信する文字列

機能：
RS-232C ch.1 へ 文字列を送信する。

　ソースファイル： Rst_Int.mar

関数プロトタイプ宣言：

int rs1_prn(char *txt);

 分類番号：02-16

 分類番号：02-17

説明：

引数１： txt 送信する文字列

機能：
RS-232C ch.0 へ文字列を送信する。
その後、CrLfコード（改行コード）を送信する。

　ソースファイル： Rst_Int.mar

関数プロトタイプ宣言：

int rs1_print(char *txt);

説明：

引数１：　buf : １行分の文字列バッファ先頭アドレス

引数２：　len : 最大 文字格納個数（ バッファサイズ ）

参考： Crコードは、Nullコードに置きかえられる。

機能：
RS-232C ch.0 から１行分の 文字列を取り出す。
エコ－バックは行わない。（ デリミッタは、Cr コード ）

　ソースファイル： Rst_Int.mar

関数プロトタイプ宣言：

int rs1_input(char *buf, int lim);

 分類番号：02-18

 分類番号：02-19

説明：

引数１：　buf : １行分の文字列バッファ先頭アドレス

引数２：　len : 最大 文字格納個数（ バッファサイズ ）

参考： Crコードは、Nullコードに置きかえられる。

機能：
RS-232C ch.0 から１行分の 文字列を取り出す。
エコ－バックを 行う。（ デリミッタは、Cr コード ）
[BackSpace] Keyに 対応している。（ Windows / Hyper Terminalに 対応 ）

　ソースファイル： Rst_Int.mar

関数プロトタイプ宣言：

int rs1_input_echo(char *buf, int lim);

説明：

機能：

　ソースファイル： Rst_Int.mar

関数プロトタイプ宣言：

 分類番号：02-20

 分類番号：03-01

説明：

この関数呼び出しにより、 10[ms]周期のインターバルタイマーが起動し
経過時間の監視用途に

set_timer1() 、 get_timer1()
set_timer2() 、 get_timer2()

LED点滅制御に
set_led_ontime() 、 flash_led()

及び、追加タイマー割込み処理
enter_tm_proc() も利用可能となる。

機能：
インターバルタイマー（ ITU 0 ）の初期化

　ソースファイル： Rst_Int.mar

関数プロトタイプ宣言：

void init_timer(void);

説明：

引数１：　cnt = 0 ～ 255 の値を設定可能

設定後、インターバルタイマの割り込み処理にて、
10[ms]毎に デクリメントされていく。
0 になったらデクリメント動作は停止する。

そして、このデクリメントされていくカウント値を
読み出すのに、get_timer1() を使用する。

機能：
タイマー処理 減算カウンタ値 設定

　ソースファイル： Rst_Int.mar

関数プロトタイプ宣言：

void set_timer1(unsigned char cnt);

 分類番号：03-02

 分類番号：03-03

説明：
set_timer1() にて設定されたカウント値が、10[ms]毎に デクリメントされる事になる。
この値を読み出すことにより、経過時間を確認する事が出来る。
0 になったらデクリメント動作は停止する。

関数値：　現在の減算カウンタ値を読み出す。

機能：
減算カウンタ値 読み出し

　ソースファイル： Rst_Int.mar

関数プロトタイプ宣言：

int get_timer1(void);

説明：

引数１：　cnt = 0 ～ 255 の値を設定可能

設定後、インターバルタイマの割り込み処理にて、
10[ms]毎に インクリメントされていく。
255 になったら、次は 0 に戻る。

そして、このインクリメントされていくカウント値を
読み出すのに、get_timer2() を使用する。

機能：
タイマー処理 加算カウンタ値 設定

　ソースファイル： Rst_Int.mar

関数プロトタイプ宣言：

void set_timer2(unsigned char cnt);

 分類番号：03-04

 分類番号：03-05

説明：
set_timer2() にて 設定されたカウント値が、10[ms]毎に インクリメントされる事になる。
この値を読み出すことにより、経過時間を確認する事が出来る。

関数値：　現在の加算カウンタ値を読み出す。

機能：
加算カウンタ値 読み出し

　ソースファイル： Rst_Int.mar

関数プロトタイプ宣言：

int get_timer2(void);

説明：

引数１：　cnt 0 ～ 65,535 の値（ 単位 [ms] ）をとる。

呼び出したら、その時間が経過しないと戻ってこない。

機能：
[ms]単位の Wait（ 時間待ち ）を作り出す。
ソフト的に空ループを回しているだけなので時間精度は、大雑把なものである。

　ソースファイル： Rst_Int.mar

関数プロトタイプ宣言：

void wait_milli(unsigned int cnt);

 分類番号：03-06

 分類番号：03-07

説明：
1/100[秒] タイマー割込み処理にて、呼び出してほしい処理（ 関数 ）を登録する。
登録する関数は、Ｃの関数でも、アセンブラの関数でもかまわない。
制限としては、必ず処理が 5[ms]以内に終了する事。
登録するタイミングは、タイマーを初期化する 前でも 後でもよい。
このルーチンを使用するプログラマは、割込み処理を熟知しているものとします。

引数１：　本来は、void* ではない。　関数の実行開始アドレスを渡す。
しかし、Evaluation software製 Ｃコンパイラの場合は このような宣言をするしかなかった。
test() という関数を登録する場合は

exter_tm_proc(*test); とする。

機能：
追加タイマー割込み処理の登録

　ソースファイル： Rst_Int.mar

関数プロトタイプ宣言：

void enter_tm_proc(void*);

説明：

enter_tm_proc() にて登録したタイマー割り込み処理を停止させます。
再度、追加タイマー割込み処理を 走らせる場合は、
enter_tm_proc()を再度呼び出す事で対応して下さい。

機能：
追加タイマー割込み処理を停止させる。

　ソースファイル： Rst_Int.mar

関数プロトタイプ宣言：

off_tm_proc(void);

 分類番号：03-08

 分類番号：04-01

説明：

引数１（入力）：　b : 1 byteバイナリ値（ 下位 4 bit が 対象 ）

引数２（出力）：　buf : 格納文字列（ 格納済みの文字列の後ろに追加される。 ）

上位4bit、下位4bitの順に '0'～'9'、'A'～'F'の文字にて表現される
16進文字列２文字として格納される。

関数値：　文字列の終端（ Null位置 ）のポインタ

機能：
１byte（ 下位 4 bit ）バイナリ値を ２桁 16進数文字列に変換し、
与えられた文字列バッファ内文字列の後ろに 追加する。

　ソースファイル： hex_bin.mar

関数プロトタイプ宣言：

char* b_hex1_cat(char b, char *buf);

説明：

引数１（入力）：　b : 1 byteバイナリ値（ 下位 4 bit が 対象 ）

引数２（出力）：　buf : 格納文字列

上位4bit、下位4bitの順に '0'～'9'、'A'～'F'の文字にて表現される
16進文字列２文字として格納される。

関数値：　文字列の終端（ Null位置 ）のポインタ

機能：
１byte（ 下位 4 bit ）バイナリ値を ２桁 16進数文字列に変換し
文字列バッファに格納する。

　ソースファイル： hex_bin.mar

関数プロトタイプ宣言：

char* b_hex1(char b, char *buf);

 分類番号：04-02

 分類番号：04-03

説明：

引数１（入力）：　b : 1 byteバイナリ値

引数２（出力）：　buf : 格納文字列（ 格納済みの文字列の後ろに追加される。 ）

上位4bit、下位4bitの順に '0'～'9'、'A'～'F'の文字にて表現される
16進文字列２文字として格納される。

関数値：　文字列の終端（ Null位置 ）のポインタ

機能：
１byte バイナリ値を ２桁 16進数文字列に変換し、
与えられた文字列バッファ内文字列の後ろに 追加する。

　ソースファイル： hex_bin.mar

関数プロトタイプ宣言：

char* b_hex2_cat(char b, char *buf);

説明：

引数１（入力）：　b : 1 byteバイナリ値

引数２（出力）：　buf : 格納文字列

上位4bit、下位4bitの順に '0'～'9'、'A'～'F'の文字にて表現される
16進文字列２文字として格納される。

関数値：　文字列の終端（ Null位置 ）のポインタ

機能：
１byte バイナリ値を ２桁 16進数文字列に変換し
文字列バッファに格納する。

　ソースファイル： hex_bin.mar

関数プロトタイプ宣言：

char* b_hex2(char b, char *buf);

 分類番号：04-04

 分類番号：04-05

説明：

引数１（入力）：　w : 1 Word（ 16bit ）バイナリ値

引数２（出力）：　buf : 格納文字列（ 格納済みの文字列の後ろに追加される。 ）

最上位から最下位に向い、4bitずつ '0'～'9'、'A'～'F'の文字にて表現される
16進文字列４文字として格納される。

関数値：　文字列の終端（ Null位置 ）のポインタ

機能：
１word バイナリ値を ４桁 16進数文字列に変換し、
与えられた文字列バッファ内文字列の後ろに 追加する。

　ソースファイル： hex_bin.mar

関数プロトタイプ宣言：

char* w_hex4_cat(int w, char *buf);

説明：

引数１（入力）：　w : 1 Word（ 16bit ）バイナリ値

引数２（出力）：　buf : 格納文字列

最上位から最下位に向い、4bitずつ '0'～'9'、'A'～'F'の文字にて表現される
16進文字列４文字として格納される。

関数値：　文字列の終端（ Null位置 ）のポインタ

機能：
１word バイナリ値を ４桁 16進数文字列に変換し
文字列バッファに格納する。

　ソースファイル： hex_bin.mar

関数プロトタイプ宣言：

char* w_hex4(int w, char *buf);

 分類番号：04-06

 分類番号：04-07

説明：

引数１（入力）：　w : 1 DoubleWord（ 32bit ）バイナリ値
変換範囲は、下位 24bitが対象となる。（ 上位 8bitは無視 ）

引数２（出力）：　buf : 格納文字列（ 格納済みの文字列の後ろに追加される。 ）

最上位から最下位に向い、4bitずつ '0'～'9'、'A'～'F'の文字にて表現される
16進文字列６文字として格納される。

関数値：　文字列の終端（ Null位置 ）のポインタ

機能：
１dword バイナリ値を ６桁 16進数文字列に変換し、
与えられた文字列バッファ内文字列の後ろに 追加する。

　ソースファイル： hex_bin.mar

関数プロトタイプ宣言：

char* dw_hex6_cat(long l, char *buf);

説明：

引数１（入力）：　w : 1 DoubleWord（ 32bit ）バイナリ値
変換範囲は、下位 24bitが対象となる。（ 上位 8bitは無視 ）

引数２（出力）：　buf : 格納文字列

最上位から最下位に向い、4bitずつ '0'～'9'、'A'～'F'の文字にて表現される
16進文字列６文字として格納される。

関数値：　文字列の終端（ Null位置 ）のポインタ

機能：
１dword バイナリ値を ６桁 16進数文字列に変換し
文字列バッファに格納する。

　ソースファイル： hex_bin.mar

関数プロトタイプ宣言：

char* dw_hex6(long l, char *buf);

 分類番号：04-08

 分類番号：04-09

説明：

引数１（入力）：　w : 1 DoubleWord（ 32bit ）バイナリ値

引数２（出力）：　buf : 格納文字列（ 格納済みの文字列の後ろに追加される。 ）

最上位から最下位に向い、4bitずつ '0'～'9'、'A'～'F'の文字にて表現される
16進文字列８文字として格納される。

関数値：　文字列の終端（ Null位置 ）のポインタ

機能：
１dword バイナリ値を ８桁 16進数文字列に変換し、
与えられた文字列バッファ内文字列の後ろに 追加する。

　ソースファイル： hex_bin.mar

関数プロトタイプ宣言：

char* dw_hex8_cat(long l, char *buf);

説明：

引数１（入力）：　w : 1 DoubleWord（ 32bit ）バイナリ値

引数２（出力）：　buf : 格納文字列

最上位から最下位に向い、4bitずつ '0'～'9'、'A'～'F'の文字にて表現される
16進文字列８文字として格納される。

関数値：　文字列の終端（ Null位置 ）のポインタ

機能：
１dword バイナリ値を ８桁 16進数文字列に変換し
文字列バッファに格納する。

　ソースファイル： hex_bin.mar

関数プロトタイプ宣言：

char* dw_hex8(long l, char *buf);

 分類番号：04-10

 分類番号：04-11

説明：

引数１（入力）：　bbuf 16進変換したい、バイナリデータが入った byte 配列

引数２（出力）：　hbuf 変換後の16進文字列を格納するバッファ

引数３（入力）：　len 変換したいバイナリデータの byte数
（ 変換した 16進文字列の文字数は２倍となる。 ）

関数値：　文字列の終端（ Null位置 ）のポインタ

機能：
ポインタで指しているバイナリデータを、指定 byte数、16進文字列データに変換し
文字列バッファに 16進文字列を格納する。

　ソースファイル： hex_bin.mar

関数プロトタイプ宣言：

char* bin_hex_block(char *bbuf, char *hbuf, int len);

説明：

引数１（入力）：　txt 16進文字列バッファ

引数２（入力）：　len 16進文字列 文字数

関数値： 0 = 正常 、 1 = 不正16進文字列

チェック内容：
16進文字列を構成する各文字が、'0'～'9' 及び 'A'～'F' で有る事を確認する。

機能：
文字列バッファの内容が 16進文字列として正しいものかどうか確認して 判定値を返す。

　ソースファイル： hex_bin.mar

関数プロトタイプ宣言：

int check_hex_str(char *txt, int len);

 分類番号：04-12

 分類番号：04-14

説明：

引数１（入力）： txt 16進文字列を格納した文字配列（ 先頭２文字が変換対象となる。 ）
必ず、２文字は 格納しておく事、３文字目以降がある場合 無視する。

関数値（出力）：　1 byte のバイナリデータ

機能：
16進２桁の文字列を 1 byte整数値に変換して返す。

　ソースファイル： hex_bin.mar

関数プロトタイプ宣言：

char hex2_b(char *txt);

 分類番号：04-13

説明：

引数１（入力）： txt 16進文字列を格納した文字配列（ 先頭２文字が変換対象となる。 ）
必ず、２文字は 格納しておく事、３文字目以降がある場合 無視する。

関数値（出力）：　1 byte のバイナリデータ

機能：
16進１桁の文字列を 1 byte整数値（ 下位 4 bitが有効 ）に変換して返す。

　ソースファイル： hex_bin.mar

関数プロトタイプ宣言：

char hex1_b(char *txt);

 分類番号：04-16

説明：

引数１（入力）： txt 16進文字列を格納した文字配列（ 先頭６文字が変換対象となる。 ）
必ず、６文字は 格納しておく事、７文字目以降がある場合 無視する。

関数値（出力）：　1 Dword（ 32 bit ）の バイナリデータ
この場合、 最上位 byte は 0 固定となる。

機能：
16進６桁の文字列を 4 byte整数値に変換して返す。

　ソースファイル： hex_bin.mar

関数プロトタイプ宣言：

long hex6_dw(char *txt);

説明：

引数１（入力）： txt 16進文字列を格納した文字配列（ 先頭４文字が変換対象となる。 ）
必ず、４文字は 格納しておく事、５文字目以降がある場合 無視する。

関数値（出力）：　1 Word（ 16 bit ） のバイナリデータ

機能：
16進４桁の文字列を 2 byte整数値に変換して返す。

　ソースファイル： hex_bin.mar

関数プロトタイプ宣言：

int hex4_w(char *txt);

 分類番号：04-15

 分類番号：04-18

説明：

引数１（入力）：　hbuf 16進文字列を格納したバッファ

引数２（出力）：　bbuf　変換後のバイナリデータを格納するバッファ

引数３（入力）：　len　変換するバイナリデータの byte数
（ 16進文字列長は、２倍となる。）

16進文字列２文字を、順次 1 byteバイナリ値に変換し格納していく。

機能：
連続する16進文字列を、指定 byte数 バイナリデータに変換して格納する。

　ソースファイル： hex_bin.mar

関数プロトタイプ宣言：

char* hex_bin_block(char *hbuf, char *bbuf, len);

説明：

引数１（入力）： txt 16進文字列を格納した文字配列（ 先頭８文字が変換対象となる。 ）
必ず、８文字は 格納しておく事、９文字目以降がある場合 無視する。

関数値（出力）：　1 Dword（ 32 bit ）の バイナリデータ

機能：
16進８桁の文字列を 4 byte整数値に変換して返す。

　ソースファイル： hex_bin.mar

関数プロトタイプ宣言：

long hex8_dw(char *txt);

 分類番号：04-17

 分類番号：05-01

説明：

引数１（入出力）：　txt 文字列を格納したバッファ

文字列内の 'a'～'z' を 'A'～'Z' に 置きかえる。

機能：
文字列の英小文字を、大文字に変換する。

　ソースファイル： str_func.mar

関数プロトタイプ宣言：

void oomoji(char *txt);

説明：

引数１（入出力）：　txt 文字列を格納したバッファ

文字列内の 'A'～'Z' を 'a'～'z' に 置きかえる。

機能：
文字列の英大文字を、小文字に変換する

　ソースファイル： str_func.mar

関数プロトタイプ宣言：

void komoji(char *txt);

 分類番号：05-02

 分類番号：05-03

説明：

引数１（出力）：　dst 送り先バッファ

引数２（入力）：　src 送り元バッファ

引数３（入力）：　len 転送 バイト数

機能：
指定 byte数、メモリ間コピーを行う。

　ソースファイル： str_func.mar

関数プロトタイプ宣言：

void mem_copy(void *dst, void *src, int len);

説明：

引数１（入力）：　txt　文字列バッファ

関数値：　格納されている文字列の長さを返す。

機能：
文字列の文字数（ byte数 ）を返す。

　ソースファイル： str_func.mar

関数プロトタイプ宣言：

int str_len(char *txt);

 分類番号：05-04

 分類番号：05-05

説明：

引数１（出力）：　dst 送り先バッファ

引数２（入力）：　src 送り元バッファ

送り元文字列の Nullコードまでを 送り先へ転送する。

機能：
文字列のコピーを行う。

　ソースファイル： str_func.mar

関数プロトタイプ宣言：

void str_copy(char *dst, char *src);

説明：

引数１（出力）：　dst 送り先バッファ

引数２（入力）：　src 送り元バッファ

引数３（入力）：　len　文字列転送の制限バイト数
送り元が、制限バイト数より長ければ、制限バイト数まで転送し

送り先の終端に Nullを格納して終了する。

機能：
文字数の制限付きで、文字列コピーを行う。

　ソースファイル： str_func.mar

関数プロトタイプ宣言：

void strn_copy(char *dst, char *src, int len);

 分類番号：05-06

 分類番号：05-07

説明：

引数１（入出力）：　dst 先頭文字列を格納したバッファ、このバッファの終端に
src の 文字列が 追加される。

引数２（入力）　：　src 追加する文字列

機能：
文字列の連結を行う。

　ソースファイル： str_func.mar

関数プロトタイプ宣言：

void str_cat(char *dst, char *src);

説明：

引数１（出力）：　buf 初期化するバッファ

引数２（入力）：　len 初期化する、バイト数

機能：
文字列バッファを指定 byte数 Nullコードで埋める。（ バッファの初期化に用いる。）

　ソースファイル： str_func.mar

関数プロトタイプ宣言：

void nulls(char *buf, int len);

 分類番号：05-08

 分類番号：05-09

説明：

引数１（出力）：　buf スペースで初期化するバッファ。

引数２（入力）：　len スペースコードの個数
格納されたスペースの終端に　Nullが追加される。

機能：
文字列バッファ内に指定個数のスペースを入れ Null終端を格納する。

　ソースファイル： str_func.mar

関数プロトタイプ宣言：

void spaces(char *buf, int len);

説明：

引数１（入出力）：　txt 格納された文字列の先頭部分のスペースを取り除く。
取り除かれた分、その後の文字列は前詰めとなる。

機能：
文字列 先頭部分のスペースを取り去る。

　ソースファイル： str_func.mar

関数プロトタイプ宣言：

void fspdel(char txt);

 分類番号：05-10

 分類番号：05-11

説明：

引数１（入出力）：　txt　文字列 後ろ部分のスペースコードを取り除く
スペースコード以外の最後の文字の後ろに Nullが格納される。

機能：
文字列、後方部分のスペースを取り去る。

　ソースファイル： str_func.mar

関数プロトタイプ宣言：

void bspdel(char *txt);

説明：

引数１（入力）：　txta 文字列Ａ

引数２（入力）：　txtb　文字列Ｂ

関数値：
文字列Ａと 文字列Ｂが 全く同じなら 0 が 戻る。

文字列Ａ ＞ 文字列Ｂ なら 1 が 戻る。
例（ "0124", "0123" ）、("0123", "012")

文字列Ａ ＜ 文字列Ｂ なら -1 が 戻る。
例（ "0123", "0124" ）、("012", "0123")

機能：
文字列の比較を行う。

　ソースファイル： str_func.mar

関数プロトタイプ宣言：

int str_cmp(char *txta, char *txtb);

 分類番号：05-12

 分類番号：05-13

説明：

引数１（入力）：　txta 文字列Ａ

引数２（入力）：　txtb　文字列Ｂ

引数３（入力）：　len 文字列 比較バイト数 制限値

関数値：
文字列Ａと 文字列Ｂが 全く同じなら 0 が 戻る。

文字列Ａ ＞ 文字列Ｂ なら 1 が 戻る。
例（ "0124", "0123" ）、("0123", "012")

文字列Ａ ＜ 文字列Ｂ なら -1 が 戻る。
例（ "0123", "0124" ）、("012", "0123")

機能：
長さ制限付きで、文字列の比較を行う。

　ソースファイル： str_func.mar

関数プロトタイプ宣言：

int strn_cmp(char *txta, txtb, int len);

説明：

引数１（入力）：　txta 調べられる文字列

引数２（入力）：　txtb 調べる部分文字列

関数値：　　txta内の txtb文字列が含まれるバイト位置（先頭 0 ）
含まれない場合、-1 を返す。

例）
 0 = instr("ABCDEFG", "ABC");

 2 = instr("ABCDEFG", "CDE");

-1 = instr("ABCDEFG", "ACC");

機能：
文字列の中に、別の指定文字列が 部分文字列として含まれてないか調べる。

　ソースファイル： str_func.mar

関数プロトタイプ宣言：

int instr(char *txta, char txtb);

 分類番号：05-14

 分類番号：05-15

説明：

引数１（入力）：　txta 調べられる文字列

引数２（入力）：　txtb 調べる部分文字列

関数値：　　部分文字列 txtb が 文字列 txta の先頭に含まれる場合 0 を返す。
含まれない場合。-1 を返す。

例）
 0 = instr("ABCDEFG", "ABC");

-1 = instr("ABCDEFG", "CDE");

-1 = instr("ABCDEFG", "ACC");

機能：
文字列の先頭部分に、別の文字列が、部分文字列として含まれてないか調べる。

　ソースファイル： str_func.mar

関数プロトタイプ宣言：

int left_instr(char *txta, char *txtb);

説明：

引数１（出力）： buf 10進文字列を格納するバッファ。

引数２（入力）：　w 2 byte整数値（ 符号なし整数として扱う ）

機能：
符号なし整数（ 2 byte ）を その値を表す 10進文字列に変換する。

　ソースファイル： str_func.mar

関数プロトタイプ宣言：

void w_ascii(char *buf, int w);

 分類番号：05-16

 分類番号：05-17

説明：

引数１（出力）： buf 10進文字列を格納するバッファ。

引数２（入力）：　w 2 byte整数値（ 符号なし整数として扱う ）

引数３（入力）：　10進文字列変換時のフォーマット調整パラメータ
先頭にスペースを加えて、全体の文字数を 指定したい場合に使用。
値が指定された文字数より大きい場合は、値が優先する。

w = 2 で cnt = 3 の場合 bufの内容は " 2" となる。
w = 12345 で cnt = 3 の場合 bufの内容は "12345" となる。

機能：
符号なし整数（ 2 byte ）を その値を表す 10進文字列に変換する。
その際、スペースによる文字数調整を行う機能を有する。

　ソースファイル： str_func.mar

関数プロトタイプ宣言：

void w_asciif(char *buf, int w, int cnt);

説明：

機能：

　ソースファイル： str_func.mar

関数プロトタイプ宣言：

 分類番号：05-18

 分類番号：08-01

説明：

機能：
AKI_H8_マザーボード、及び AKI_H8_USB基板の DIP-SWポート、LED、LCDポートの
初期化を行う。

　ソースファイル： aki_mbio.mar or aki_usbio.mar

関数プロトタイプ宣言：

void init_aki_mb(void);

説明：

機能：
AKI_H8マザーボード、AKI_H8_USB基板に接続される
16桁 2行のLCD（ 液晶表示器 ）の初期化を行う。

　ソースファイル： aki_mbio.mar or aki_usbio.mar

関数プロトタイプ宣言：

void init_mb_lcd(void);

 分類番号：08-02

 分類番号：08-03

説明：
　DIP-SWの bit数が、AKI_H8マザーは、 8bit（ Wordデータの b7 ～ b0 ）であるのに対し、
AKI_H8_USB基板は、4bit（ Wordデータの b3 ～ b0 ）である事に注意する事。
DIP-SWのビットが無い、上位ビットは 通常 0 になっている。

機能：
マザーボード上の DIP-SWの値を 取り出す。
（ init_aki()を呼び出した時の値を変数に保存しており、現在の DIP-SWの値ではない。）

　ソースファイル： aki_mbio.mar or aki_usbio.mar

関数プロトタイプ宣言：

int get_mb_dipsw(void);

説明：

関数値： DIP-SWの下位 4bitと 40h を組み合せて構成される ASCII文字を アドレス文字として
返す。 アドレス文字の組み合せは以下の通り

"@" : 40h 、 "H" : 48h　　
"A" : 41h 、 "I" : 49h
"B" : 42h 、 "J" : 4Ah
"C" : 43h 、 "K" : 4Bh
"D" : 44h 、 "L" : 4Ch
"E" : 45h 、 "M" : 4Dh
"F" : 46h 、 "N" : 4Eh
"G" : 47h 、 "O" : 4Fh

機能：
DIP-SWの 下位4bitにて、設定される、アドレス文字 "@" ～ "O" を取り出す。

　ソースファイル： aki_mbio.mar or aki_usbio.mar

関数プロトタイプ宣言：

int get_mb_myadr(void);

 分類番号：08-04

 分類番号：08-05

説明：

引数１： dt LEDのビット並びに対応するデータ

AKI_H8_MB AKI_H8_USB
（ ２個 ） （ ４個 ）

　　b3
　　b2

　　b1 　　b1
　　b0 　　b0

　なお、（ set_mb_led_ontime()と flash_mb_led() ）の組み合せと、
put_mb_ledは 同じ LED資源をアクセスするので 排他 扱いになります。
同じプログラム内にて混在して使用しないで下さい。　

機能：
AKI_H8_MBまたは、AKI_H8_USB基板上の LED に データを出力します。
（ 該当するビットが 1 の時、LED が点灯する。）

　ソースファイル： aki_mbio.mar or aki_usbio.mar

関数プロトタイプ宣言：

void put_mb_led(unsigned char dt);

説明：
LEDの接続されるポートの bit0のLEDを点滅処理に使用します。

引数：　dt = 点灯時間（ 10[ms]単位 ）100と 設定したら１秒点灯することになる。

何らかの LEDを点灯させたいイベントが発生した場合に、set_mb_led_ontime()を
呼び出し、その後、無限ループ内にて flash_mb_led()を都度 読み出す事により
表示の更新を行う。

例えば、コマンドを受け付けたら　１秒間 LEDを 点灯させるという場合などに使用する。

機能：
LEDの 点滅処理を行う際の 点灯開始、及び点灯時間（ 10[ms]単位 ）の設定。

　ソースファイル： aki_mbio.mar or aki_usbio.mar

関数プロトタイプ宣言：

void set_mb_led_ontime(unsigned char dt);

 分類番号：08-06

 分類番号：08-07

説明：
通常、無限ループ内にて、毎回呼び出す。
内部処理は、アセンブラで数ステップなので時間は殆どかからない。

　なお、時間の経過はインターバルタイマの割り込み処理にてカウントしているので
init_timer()を呼び出してないと正常に動作しない。

機能：
set_mb_led_ontime()で設定した時間 LED点灯、時間経過後 LED消灯を行うための
LED表示 更新処理。

　ソースファイル： aki_mbio.mar or aki_usbio.mar

関数プロトタイプ宣言：

void flash_mb_led(void);

説明：
LCDの表示処理は、LCDとのタイミングをとるため書き込みに時間が、ややかかる。
LCDが接続されてない場合は、明らかに無駄な時間となるため、このLCD出力処理を
スキップする機能を実現する関数である。

引数１：　sw = 0 LCD に 出力しない。
 sw = 1 LCD に 出力する。

機能：
AKIマザーボード上の LCDの 出力処理を実行させるか、停止させるかを設定する。

　ソースファイル： aki_mbio.mar or aki_usbio.mar

関数プロトタイプ宣言：

void set_mb_lcdsw(unsigned char sw);

 分類番号：08-08

 分類番号：08-09

説明：
スペースコードで ＬＣＤ表示を埋める。

機能：
AKIマザーボード上の LCD の 表示内容を 消去する。

　ソースファイル： aki_mbio.mar or aki_usbio.mar

関数プロトタイプ宣言：

void erase_mb_lcd(void);

説明：

引数１：　ln 表示行位置（ 0 か 1 ）上側から 0 行目、1 行目

引数２： txt 表示文字列（ 16文字を越えていたら 17文字目以降は表示されない。）

機能：
AKIマザーボード上の LCD に文字列を 出力する。

　ソースファイル： aki_mbio.mar or aki_usbio.mar

関数プロトタイプ宣言：

void print_mb_lcd(int ln, char* txt);

 分類番号：08-10

 分類番号：08-

説明：

機能：

　ソースファイル： aki_mbio.mar or aki_usbio.mar

関数プロトタイプ宣言：

説明：

機能：

　ソースファイル： aki_mbio.mar or aki_usbio.mar

関数プロトタイプ宣言：

 分類番号：08-

