
デジタルノギス データ取り込み
７セグメントＬＥＤ表示 PIC基板設計

目　　次

[1]　概要： 3

[2]　回路の検討： 3

[3]　信号の引き出し： 4

[4]　ノギス、PICマイコン間ケーブル： 5

[5]　使用PICマイコン（ PIC16F886 ）ピンアサイン： 5

[6]　PICマイコン基板回路図： 6

[7]　7SegmentLED表示基板回路図： 7

[8]　パーツリスト： 8

[9]　PICポートレジスタマップ： 9

[10]　7Segment LED のドライブ： 9

[11]　7Segment LED 各桁のドライブ： 10

[12]　作り出して分った事： 10

[13]　今回作成したデジタルノギスDRO基板のソフト機能： 10

[14]　ノギス表示部分の信号引き出し： 11

[15]　ケーブルを接続したところ： 13

[16]　今回作成した基板： 13

[17]　ソフト開発環境について： 14

2010年3月10日

－ 3 －

デジタルノギス データ取り込み
７セグメントＬＥＤ表示 PIC基板設計

[1]　概要：
　デジタルノギスのデータの垂れ流しを取り込み、７セグメントＬＥＤに表示を行う

PICマイコン基板を作成する事を目的とする。

拡張機能として、ホスト通信も検討する。

　用途としては、卓上ミニ工作機械のＤＲＯ用途（フライス盤のＸ，Ｙ，Ｚ軸の座標表示）を

想定する。

[2]　回路の検討：
　１枚の基板に、1本のデジタルノギスを対応させる。

測定軸が、３軸必要であれば、３枚基板を用意するものとする。

７セグメントの表示基板も、１軸１枚（横に細長い基板）として扱う。

①　デジタルノギスの信号取り込み：

デジタルノギスの出力信号は、データとクロックの２つの信号である。　

デジタルノギスは、電源 1.5[V]なので通常のマイコンで使用する 5[V]の回路に

直接接続する事が出来ないため、レベル変換回路が必要となる。

　またデジタルノギスとマイコン基板との間が多少離れている場合も考えられる

ので、ノイズ対策も考慮しておいた方が望ましい。

　考えられるのは、トランジスタで受ける回路、またはコンパレータICで受ける

回路が考えられる。　ノイズ対策としては読み取りに支障が出ない程度に、CR

による積分回路を入れる。　及びシュッミットトリガ入力にする事も考えられる。

　シュッミットトリガは、正帰還となるのでトランジスタアンプでは２段にする

必要がある。　トランジスタ回路では周辺のバイアス抵抗もちょこちょこ必要と

なるので単純な扱いのコンパレータIC（LM339）を使用してシュッミットトリガ

を実現してみる事にする。　コンパレータの敷居値は、ダイオードの順電圧

 約 0.7[V]を使用する。

②　使用PICマイコン：

デジタル信号入力に、DI 2bit必要。 ７セグメントドライブに

a, b, c, d, e, f, g, dotの各セグメントに 8bit、それと桁数分の DOが

必要となる。　今回は拡張性を考慮して桁に 8bit用意する。

よって、７セグメントドライブには、DOが 16bit必要となる。

　18pinのPICでは、この時点で足が足りないので入手のしやすさと余裕を考え

28pinのPIC（ PIC16F886 ）を想定する。

③　７セグメント表示基板：

表示させる桁数でかわるが、７セグメントドライブにやや信号線が必要となる。

７セグメントはアノードコモンを使用して a, b, c, d, e, f, g, dotの各

セグメントは、8bitのトランジスタアレィ（TD62083AP）を使用する。

デジタルノギス用途では、６桁表示で足りると思われるが、拡張性を考慮して

8本の DOを用意する事にする。　アノード側のドライブは 2SA1015を必要個数

並べる事にする。　表示基板は、Ｘ、Ｙ、Ｚ表示等で縦に３枚並べて使う事が

考えられるため、詰めて並べられる様に、７セグメントＬＥＤだけにして

他の電子部品は乗せない事にする。

2010年3月10日

－ 4 －

④　デジタルノギスのリモートリセット：

デジタルノギスは、工作機械の可動部の脇に取り付けたりすると、見るのも困難

であるが、リセットボタンを押すのも厄介である。

基準位置に移動して座標値をリセットしたいという使い方が当然あり得るので

リモートリセット出来ないか検討する。

デジタルノギスの通信機能でリセットを受け付けるコマンドが用意されているのか

は全く分らない。　ノギス側で一方的に垂れ流し的にマスタクロックを出して

いるので通信仕様的に相手側からのコマンドを受ける事は難しいように思われる。

じゃ出来ないのか。？

　一つ実現する方法としてノギスの表示部をバラしてリセットボタンの配線を

引き出して使用する事が考えられる。　ノイズに弱くなる事は考えられるが

他に方法は無い。

ノギスと マイコンとの間は細いシールド線を用いる方が望ましいと思われる。

リモートリセットについては上記の方法で成功した。

ノイズ対策としてシールド線の反対側に 0.1uFのコンデンサを付けてみたが特に支障は

なかった。　よってこの方法で、ＯＫと判断する。

[3]　信号の引き出し：
　極細の４芯シールド線を用いて信号を引き出す。　長さ１m程度とする。

デジタルノギス側のコネクタは、元々付いているエッジボードコネクタに合うコネクタが

ないので、市販品のコネクタを取り付ける事で対応する。

　今回、デジタルノギスのコネクタ部から、あまり大きく飛び出さないように 2mmピッチの

コネクタを付けた。 左から

1. GND

2. DATA

3. CLOCK

4. RESET

のピンアサインとした。

　ノギス本体とコネクタ間の配線は、0.28mmの単線にて行った。

１、2、3は、エッジボードから引き出し、４は、RESETボタンのパターン部にハンダ着けして

引き出した。　コネクタの固定はホットボンドにて行った。

 2mmのコネクタはやや小さいので、ピンへのハンダ付けがやりにくい。

長く熱しているとピンを止めている樹脂が柔らかくなってピンが斜めになる事もある。

（その場合ラジペンで逆方向に曲げて直す。）

ターミナル側も専用の圧着ペンチが無いのでハンダ付けしてラジペンで丸く曲げた。

小さいのでハンダ付けがやりにくい。

使用コネクタ：モレックス 53253（ケーブル側：51065、ターミナル：50212-8100）

 入手先：サトー電気

inch/mm

OFF ON RESET

1 2 3 4

2010年3月10日

－ 5 －

[4]　ノギス、PICマイコン間ケーブル：

4

1

2

3

1

4

3

2

PICマイコン側
CN1

ノギス側
コネクタ

モレックス
51065、50212-8100×4本

（2mmピッチ）
サトー電気

モレックス
5051、5159×4本
(2.5mmピッチ)
サトー電気

極細4芯シールド
オヤイデ電気 ONLINE SHOP

商品コード：2769

[5]　使用PICマイコン（ PIC16F886 ）ピンアサイン：

P
I
C
1
6
F
8
8
6

1

2

8

7

6

5

4

3

12

11

10

9

14

13

28

27

21

22

23

24

25

26

17

18

19

20

15

16

/MCLR

RA0

RA4

RA3

RA2

RA1

RA5

Vss

Vss

Vdd

RB6

INT

RB1

RB2

RB3

RB4

RB5

RB7

SDA

RC5

RC6

RC7

SCL

OSC2

OSC1

RC2

RC1

RC0

CRによるRESET信号を接続す
る。

GND

Vcc

GND

20MHzセラミック発振子を
接続する。

I2Cによるホスト通信に使用I2Cによるホスト通信に使用

ノギスの CLOCK信号を接続

ノギスの DATA信号を接続

７セグメント(a)へ接続

７セグメント(g)へ接続

７セグメント(f)へ接続

７セグメント(e)へ接続

７セグメント(d)へ接続

７セグメント(c)へ接続

７セグメント(b)へ接続

７セグメント(.)へ接続

７セグメント(1桁)へ接続

７セグメント(7桁)へ接続

７セグメント(6桁)へ接続

７セグメント(5桁)へ接続

７セグメント(4桁)へ接続

７セグメント(3桁)へ接続

７セグメント(2桁)へ接続

３LED(8桁)へ接続

予備.1 予備.2

2010年3月10日

－ 6 －

[6]　PICマイコン基板回路図：

CN1

GND

DATA

CLOCK

RESET

CN2

0
.
1
u

100

IC1.2
+

-

IC1.1
+

-

Vcc

Vcc

IC1.3
+

-

IC1.4
+

-

IC1 : LM339
IC2 : PIC16F886
IC3 : TD62083AP

10K

1
0
0
0
p

1
0
0
0
p

220K

220K

3
.
3
K

3
.
3
K

3
.
3
K

0
.
1
u

1
N
4
1
4
8

P
I
C
1
6
F
8
8
6
(
I
C
2
)

1
0
K

1
.
5
u

1
N
4
1
4
8

20M

1

11

10

9

8

7

6

5

4

3

2

14

13

12

Vcc

Vcc

7s.1

7s.8

7s.7

7s.6

7s.5

7s.4

7s.3

7s.2

28

27

26

25

24

23

22

21

20

19

18

17

16

15

8

1

2

3

4

5

6

7

16

15

14

13

12

11

10

9

Vcc

1
0
K

1
0
K

CN3

CN3

I2Cホスト
インタフェース

CN4

Vcc

1
0
K

1
0
K

IC3/TD62083AP

1

8

7

6

5

4

3

2

11

12

13

14

15

16

17

18

Vcc

9

10

RB7

INT

RB1

RB2

RB3

RB4

RB5

RB6

SDA

RC5

RC6

RC7

Vss

Vdd

SCL

RC2

RC1

RC0

OSC2

OSC1

Vss

RA5

RA4

RA3

RA2

RA1

RA0

/MCLR

設定用 DIP-SW
1

2

1

3

2

7s_a

7s_b

7s_e

7s_d

7s_c

7s_.

7s_g

7s_f

VccCN5

1

2

0
.
1
u

3
3
u

2SA1015 *8

GND

5V

3.3K

3.3K

3.3K

3.3K

3.3K

3.3K

3.3K

3.3K

0
.
1
u

68

68

68

68

68

68

68

68

CN1 : モレックス 5051(4P)
CN2 : モレックス 5051(2P)
CN3 : ﾌﾗｯﾄｹｰﾌﾞﾙｺﾈｸﾀ (16P)
CN4 : モレックス 5051(3P)
CN5 : モレックス 5051(2P)

3

10

12

8

9

11

5

4

7

6

2

1

10K

Vcc

0
.
1
u

注意点
①　IC2（PIC16F886）は ICソケットに挿す事にします。
②　圧着コネクタは、モレックスでなくても 2.5mmピッチのものであればよい。
③　16芯フラットケーブルコネクタも入手しやすいもので結構です。

4

3

GND

5V

4

3

2

1

2

1

リセット
ボタン

ノギス
ケーブル

７SegmentLED
基板ケーブル

７SegmentLED
基板ケーブル

電源ケーブル

2010年3月10日

－ 7 －

[7]　7SegmentLED表示基板回路図：

a
b
c
d

g
f

e
.

7
S
e
gm
e
n
t L
E
D

7
8
3

5
10
9
1
2
4
6

a
b
c
d

g
f

e
.

7
S
e
gm
e
n
t L
E
D

7
8
3

5
10
9
1
2
4
6

a
b
c
d

g
f

e
.

7
S
e
gm
e
n
t L
E
D

7
8
3

5
10
9
1
2
4
6

a
b
c
d

g
f

e
.

7
S
e
gm
e
n
t L
E
D

7
8
3

5
10
9
1
2
4
6

a
b
c
d

g
f

e
.

7
S
e
gm
e
n
t L
E
D

7
8
3

5
10
9
1
2
4
6

a
b
c
d

g
f

e
.

7
S
e
gm
e
n
t L
E
D

7
8
3

5
10
9
1
2
4
6

a
b
c
d

g
f

e
.

7
S
e
gm
e
n
t L
E
D

7
8
3

5
10
9
1
2
4
6

11
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2

F
C
C

1
6
P

使用 7Segment LED
 LN516RA（赤）

正面から見て左端に 3mmLED３個
が来るように配置してます。
3mmLED３個は、縦配置で上から
青（9番接続）
黄（10番接続）
赤（16番接続）
にしています。

7桁目（最上位桁）

1桁目（最下位桁）

2010年3月10日

－ 8 －

[8]　パーツリスト：

PICマイコン基板
No.部品名 メーカー名 値 個数
1カーボン抵抗 1/4W 100 1
2カーボン抵抗 1/4W 68 8
3カーボン抵抗 1/4W 2.2K 2
4カーボン抵抗 1/4W 3.3K 11
5カーボン抵抗 1/4W 10K 7
6カーボン抵抗 1/4W 220K 2
7IC1 NS LM339 1
8IC2 MicroChipPIC16F8861
9IC3 東芝 TD62083AP1
10PNPトランジスタ 東芝 2SA1015 8
11ダイオード 1N4148 2
12セラミック発振子 20MHz 1
13セラコン 1000p 2
14積層セラコン 0.1uF 5
15積層セラコン 1.5uF 1
16電解コン 33uF 1
17DIP-SW 2P 1
18ICソケット 28P 1
19コネクタ CN1,CN5 モレックス 5045/4P 2
20コネクタ CN2 モレックス 5045/2P 1
21コネクタ CN3 ﾌﾗｯﾄｹｰﾌﾞﾙ用 16P 1
22ﾌﾗｯﾄｹｰﾌﾞﾙ ｹｰﾌ゙ﾙ側ｺﾈｸﾀ 16P 1
23コネクタ CN4 モレックス 5045/3P 1
24ｺﾈｸﾀ ｹｰﾌ゙ﾙ側CN1,CN5 モレックス 5051/4P 2
25ｺﾈｸﾀ ｹｰﾌ゙ﾙ側CN2 モレックス 5051/2P 1
26ｺﾈｸﾀ ｹｰﾌ゙ﾙ側CN4 モレックス 5051/3P 1
27ｺﾈｸﾀ ピン モレックス 515913
28基板 1

7Segment LED表示基板
No.部品名 メーカー名 値 個数
17Segment LED LN516RA 7
2φ3mm LED 緑 1
3φ3mm LED 黄 1
4φ3mm LED 赤 1
5ﾌﾗｯﾄｹｰﾌﾞﾙ基板側ｺﾈｸﾀ 16P 1
ﾌﾗｯﾄｹｰﾌﾞﾙ ｹｰﾌ゙ﾙ側ｺﾈｸﾀ 16P 1
6基板 1

ノギス付加部品
No.部品名 メーカー名 値 個数
1本体側コネクタ モレックス 532531
2ケーブル側コネクタ モレックス 510651
3コネクタピン モレックス 50212-81004

配線材、その他
No.部品名 メーカー名 値 個数
1極細４芯シールドケーブル 1m
216芯フラットケーブル 少々
3その他、0.3SQ程度の配線材 少々

　部品購入先　秋月電子通商
　　　サトーパーツ
　　　オヤイデ電気

2010年3月10日

－ 9 －

[9]　PICポートレジスタマップ：

b0b1b2b3b4b5b6b7

7seg
1桁目

7seg
2桁目

7seg
3桁目

7seg
4桁目

7seg
5桁目

7seg
6桁目b6b7PORTA

ノギス
Clock
(INT)

7seg
(g)

7seg
(f)

7seg
(e)

7seg
(d)

7seg
(c)

7seg
(b)

7seg
(a)PORTB

7seg
7桁目

3LED
DIP-SW
1

I2C
SCL

I2C
SDA

DIP-SW
2

7seg
(,)

ノギス
DataPORTC

　ノギスClockは、PORTB.0を INT信号（立ち上がりエッジ）として受ける。
INT信号の割り込み処理にて、ノギスDataを読み取る。

PORTAの b6, b7は セラミック振動子を接続するためI/Oポートとして使用できない。
PORTCの b4, b3は I2Cの通信に使用するため I/Oポートとして使用出来ない。

[10]　7Segment LED のドライブ：

　今回使用する、7Segment LEDは、アノードコモンの LN516RAである。
複数の 7Segment LEDをダイナミック点灯させる。　8桁あれば、明るさは連続点灯の1/8に
減少するので、多少多めに電流を流す必要がある。
　PICでの直接ドライブは無理があるので、アノード側 カソード側にドライバを入れる。
a, b, c, d, e, f, g, .の各セグメントは、Lowに落とす事になるので、8bitのトランジスタ
アレィにて駆動する。　アノード側は 各桁を指定する信号になる。
　アノード側は、Hiに引き上げる事になるが PNPのトランジスタアレィは出回って無いので
PNPトランジスタ（ 2SA1015 ）を桁数分並べる事にする。

 0～9の数字を点灯させるためには、7SegmentLEDの どの Segmentを
点灯させれいいかを整理しておく。
Segment側は Hi Active（ 正論理 ）となる。

(DO)

(DO)

(DO)(DO)(DO)(DO)(DO)

(DO)(DO)(DO)(DO)(DO)(DO)

(Di)(DO)(Di) (Di) (DO)(DO)

a

bf

e c

d

g

値 点灯セグメント 出力データ

0 a, b, c, d, e, fPORTB = 0xFC;

1 b, c PORTB = 0x60;

2 a, b, d, e, gPORTB = 0xDA;

3 a, b, c, d, gPORTB = 0xF2;

4 b, c, f, gPORTB = 0x66;

5 a, c, d, f, gPORTB = 0xB6;

6 a, c, d, e, f, gPORTB = 0xBE;

7 a, b, c PORTB = 0xE0;

8 a, b, c, d, e, f, gPORTB = 0xFE;

9 a, b, c, d, f, gPORTB = 0xF6;

小数点Segmentの点灯

PORTC.b6 = 1 とする。
PORTCは、7,8桁目ポートと
機能が混在しているので

注意する事。!!

2010年3月10日

－ 10 －

[11]　7Segment LED 各桁のドライブ：

　7Segmentの各桁の指定は、LEDのアノード側を PNPトランジスタでドライブするので
Low Active（ 負論理 ）になる。　
よって表示させない場合は、全ての桁のポートを Hiにしておく。
そして表示させる桁のポートだけを順次 Lowに落として Activeにしていく。

桁 出力データ

1 PORTA = 0x3E; , PORTC =¦ 0x03

2

3

4

5

7

6

8

PORTA = 0x3D; , PORTC =¦ 0x03

PORTA = 0x3B; , PORTC =¦ 0x03

PORTA = 0x37; , PORTC =¦ 0x03

PORTA = 0x2F; , PORTC =¦ 0x03

PORTA = 0x1F; , PORTC =¦ 0x03

PORTA = 0x3F; , PORTC =¦ 0x02

PORTA = 0x3F; , PORTC =¦ 0x01

[12]　作り出して分った事：

　今回のデジタルノギスは、mmと inchの２つの表示モードが有るが、mmとinchの区別は

どうなっているのか疑問が出てきた。　出力データ上で見分けが付かないと mmのデータを

送っているのか、inchのデータを送っているのか分らない。

　今回、受信したデータ 4bit 6個のデータをそのまま7SegmentLEDに表示して分った事は

最大値bitというか、最終bit（先頭から24番目）のbitが 1であれば inchであることが

判明した。

　それと、ノギスで inchモードで表示していると 最下位に 小さな 5 が表示されることが

ある。　これは、データ上ではどのように扱われているのか。？

　これについても分った。　最小分解能が、mmモードの場合 1/100mmで　12.5mmであれば

1250 というデータ値になる。

 inchモードの場合、 1.200inchの場合、倍の 2400という値で送信される。

1.200 5 inchと ノギスの液晶に表示されている場合は、 2401という値で送信される。

 値が２倍されて表示されると扱いにくいので、今回は、inchモードの場合、受信した

データを 5倍して表示することにした。

[13]　今回作成したデジタルノギスDRO基板のソフト機能：

①　電源ＯＮN時、7Segment LEDの表示テスト（全桁 0～9の表示）を行う。

その後 苦肉の -READY- 表示を行う。 (̂ _^;

②　データ受信中は、黄色LEDを点灯させる。

③　インチモードの場合は、青色LEDを点灯させる。

④　ミリモード、インチモードにて、少数点表示位置を適切に表示する。

⑤　上位桁のゼロサプレスを行う。

⑥　負の値を表示する時は、マイナス（-）表示を絶対値に応じて表示位置をシフトさせる。

⑦　初期表示テストが不要な場合は、DIP-SW.1を ON（Lowに落とす）事により

表示テストを行わないようにする。

⑧　ソフトではないが、リモートリセット機能有り。

2010年3月10日

－ 11 －

[14]　ノギス表示部分の信号引き出し：

基板を外した状態です。

LCD（液晶表示器）は、何と基板上に乗って

いるだけです。（線でつながっていませ

ん。）すぐ外れます。

プラスチックのカバーにより液晶位置が所

定位置に固定されるようになっておりコネ

クタパターンと基板と接続されるようで

す。

　まず、電池を外して下さい。

ノギス裏側のシールを剥がし、４つのネジ

を外します。　これによりステンレスの

定規よりプラスチックの表示部分が

外れます。

更に裏の基板を止めている４つの皿ビスを

外します。　基板を外す時、中のボタンや

LCDを押さえているゴムの部品が外れて落ち

てくる時があるので気を付けて下さい。

注意：　ノギスを分解して元に戻らなくなっても、私は保証できませんので

あくまで自己責任で行って下さい。

2010年3月10日

－ 12 －

　カバーをかぶせる時に、カバー内側の

ネジ支柱で、リセットのリード線を踏まない

ように注意してカバー内に固定して下さい。

 押しボタンのゴム、液晶表示器、それを固定

するゴムは、最初にカバー内に入れておいて

上から基板を被せるような感じで入れます。

　当然 4本のリード線はカバーのコネクタ穴か

ら外に出るように挿入して下さい。

カバーを被せてからコネクタをハンダ付けしま

す。 ちょっとハンダ付けが

やりにくいですけど...

　コネクタの樹脂が柔らかくなりピンが曲がっ

てくるのでなるべく早くハンダ付けした方が

いいです。

 ハンダ付けしたら、リード線を折りたためる

ようにＳ字に曲げます。

この程度に引っ込ませたらホットボンドで

隙間が出来ないようにコネクタ回りを固めま

す。

　ここまで出来たらステンレスの定規を付けて

元通りに組み立てて下さい。

1

LCD（液晶表示器）を外し

　リセットボタン部分に細い

単線のリード線①を ハンダ付けします。

2010年3月10日

－ 13 －

[15]　ケーブルを接続したところ：

　オヤイデ電気より購入した
極細４芯シールド線でケーブル
を作りました。
ノギス側が 2mmピッチ4Pコネク
タです。
PIC基板側は通常の 2.5mmピッ
チです。
今回長さは、1mほどにしまし
た。

ケーブルが出来たらテスタで
導通と隣のピンと接触してない
か調べておいて下さい。

[16]　今回作成した基板：

　7Segment LED基板
去年パターンを設計をして
別の基板と共に基板業者に
製造してもらった物です。

　今回のPICマイコンの基板は、秋月電子のユニバーサルボードにて作成しました。
一枚だけならいいけど何枚も作ることになるとうんざりですよね。

　ちゃんと動作することが確認できたので、お金に余裕が有るとき!! という条件付きで
この基板もパターン起そうかな。？ と思っております。（ いつの事やら... ）

2010年3月10日

－ 14 －

[17]　ソフト開発環境について：

　私は、半年ぐらい前までは、PICのプログラムは、ずっとMPLABの MPASM（アセンブラ）で開
発していました。
　アセンブラで作るのは、コンパクトで高速なオブジェクトを作るのは可能ですが、使用する
PICのデータシートとにらめっこしながら煩雑なコードを記述しなければならないため
ちょっと面倒でした。
　Ｃの開発環境に移行したいと思っておりましたが、使い方がよく分らないせいか、不可解な
現象で悩まされ、しばらくはＣの環境は放置しておりました。　巷では、PICのＣコンパイラ
は、バグがある。　クセがある。　との噂があり 私が使おうとしていた WIZ-Cも潜在的な
バグがあるのでは... と思ってました。 半年前ぐらいに WIZ-Cのバージョンアップ版を
購入しました。（ Version 16.00です。）
少しは良くなっているのでは... と思い使い始めました。

試行錯誤しながら、仕事で小さいプログラムを２本ほど作成しました。
今回が、３本目です。　で、慣れてくると、アセンブラに比べ すごく楽です。
特に、WIZ-Cの場合、ちょどWindows開発環境の VBのようにエレメントと呼ばれるアイコンの
機能部品（PICの周辺機能をラップしている。）をフォームにぺたぺた貼り付ける感覚で
扱え、プロパティシートの設定で細かいパラメータ（例えばシリアル通信のボーレイト等）が
設定出来るので、ほとんどの周辺回路の初期化処理をコードで書いたことがありません。
　これはすごく楽です。　更に応答速度にシビアにこだわらなければ、割込み機能を持ったエ
レメントを貼り付けた際に オカ－レンス関数（割込みが発生したときに、呼び出されるイベ
ント処理関数）の登録が出来ます。 これも便利で、タイマー割込み、外部割込み、通信割込
みのイベント処理を VBのイベント処理的な感覚で扱える物です。　
 ただ組み込み用開発環境として見るとコード記述を中心とした他の処理系と比べ、ビジュア
ルに設定出来る事が戸惑う要素なのかもしれません。
今となっては、この便利さになじんでしまって、もうアセンブラには戻る気になりません。

下の画像は、WIZ-Cのアプリケーションデザイナの画面です。
犬のアイコンはドッグタイマのリフレッシュ機能、時計はタイマー機能、→は出力、←は
入力といった具合で、どのピンを入力、あるいは出力にするかをビジュアルに設定します。

2010年3月10日

－ 15 －

　気を付けなければならない事も有ります。

Ｃ言語の場合、ハードの細かい事をあまり意識せずにコーディング出来ますが、唯一 PICの

ハード仕様を意識しないといけない部分としてコンフィグレーションビットの設定が有りま

す。

　これがちょっと厄介です。　PICの品種毎にコンフィグレーションビットが微妙に異なるた

め、使用するPICのデータシートのコンフィグレーションビットの説明を見て WIZ-Cの設定と

見比べて下さい。

　初期に経験した不可解な現象の原因は、殆どがこれでした。

それと何もしないと I/Oピンがアナログ入力に初期化される場合があるので注意が

必要です。　PIC16F886の場合は、全てデジタルI/Oで使用する時には初期化処理として

ANSEL、ANSELH 共に 0 を代入する必要があります。

 それとコンフィグレーションの設定と、アプリケーションデザイナに貼り付けるエレメント

の連携も意識する必要があります。

　例えば、コンフィグレーションビットで WDTを有効にしたら、Watch Dogのエレメントを

貼り付ける必要があります。 これをやらないと途中でリセットが毎回かかるので、ちょっと

進んで頭に戻るような状態でループします。

　それと WIZ-Cは、イギリスで開発された開発環境なので日本語の対応がいまいちなのです。

デフォルトでは、開発環境内のエディタで漢字を入力する事が出来ません。

半角英数記号のみです。　インストール時に漢字をサポートする設定が出てくるのでそれを有

効にすると確かに漢字は入力出来るのですが、そのソースファイルは、半角英数も 2byte表記

の ユニコード文字なので コンパイラが直接受け付けません。

よって 漢字を ?? に変換したASCII文字のソースファイルを別途 自動生成してコンパイラが

読み込みます。　何か ややこしい話です。

　またユニコードのファイルは ソースファイルとして他の処理系に持って行く場合も扱いに

くいので何とかならないかと思っていました。

　その後、一ついい方法を思いつきました。

自分が使いなれたテキストエディタ（ MIFESでも秀丸でもかまいません。）で ソースを

作成するのです。 WIZ-Cのコンパイラは、 //のコメント部分に 漢字コードが含まれていても

無視するだけなので問題ありません。

 WIZ-C内で 別のエディタを呼び出すのは、WIZ-Cの Toolsに登録は出来ます。

別のエディタの呼び出しは出来ますが自動的にプロジェクトのソースを読み込むまでは出来ま

せん。　しかし、エディタの履歴に最近呼び出したファイル名が残っているので不自由は有り

ません。　　これで自分好み？ で 使い勝手が良くなった気がします。

 この場合の注意：WIZ-Cのエディタ側で編集中のファイルを表示しないこと。!!

ユーザが作成するファイル名は ?????_user.c と最後に user.cが付く仕様になっています。

このファイルのみ外部のエディタで編集するということです。

そしてコンパイル前に必ず保存する事。

WIZ-Cに関しては、また改めて説明のページを作ろうかと思います。

